scispace - formally typeset
Open AccessPosted Content

Neural Architecture Search with Reinforcement Learning

Barret Zoph, +1 more
- 05 Nov 2016 - 
Reads0
Chats0
TLDR
This paper uses a recurrent network to generate the model descriptions of neural networks and trains this RNN with reinforcement learning to maximize the expected accuracy of the generated architectures on a validation set.
Abstract
Neural networks are powerful and flexible models that work well for many difficult learning tasks in image, speech and natural language understanding. Despite their success, neural networks are still hard to design. In this paper, we use a recurrent network to generate the model descriptions of neural networks and train this RNN with reinforcement learning to maximize the expected accuracy of the generated architectures on a validation set. On the CIFAR-10 dataset, our method, starting from scratch, can design a novel network architecture that rivals the best human-invented architecture in terms of test set accuracy. Our CIFAR-10 model achieves a test error rate of 3.65, which is 0.09 percent better and 1.05x faster than the previous state-of-the-art model that used a similar architectural scheme. On the Penn Treebank dataset, our model can compose a novel recurrent cell that outperforms the widely-used LSTM cell, and other state-of-the-art baselines. Our cell achieves a test set perplexity of 62.4 on the Penn Treebank, which is 3.6 perplexity better than the previous state-of-the-art model. The cell can also be transferred to the character language modeling task on PTB and achieves a state-of-the-art perplexity of 1.214.

read more

Citations
More filters
Proceedings ArticleDOI

DMCP: Differentiable Markov Channel Pruning for Neural Networks

TL;DR: A novel differentiable method for channel pruning, named Differentiable Markov Channel Pruning (DMCP), to efficiently search the optimal sub-structure from unpruned networks, which can achieve consistent improvement than state-of-the-art pruning methods in various FLOPs settings.
Proceedings Article

A Hierarchical Model for Device Placement

TL;DR: In this article, a hierarchical model for efficient placement of computational graphs onto hardware devices, especially in heterogeneous environments with a mixture of CPUs, GPUs, and other computational devices is introduced.
Posted Content

BigNAS: Scaling Up Neural Architecture Search with Big Single-Stage Models

TL;DR: The proposed BigNAS, an approach that challenges the conventional wisdom that post-processing of the weights is necessary to get good prediction accuracies, is proposed, able to train a single set of shared weights on ImageNet and use these weights to obtain child models whose sizes range from 200 to 1000 MFLOPs.
Journal ArticleDOI

A graph placement methodology for fast chip design

TL;DR: In this article, the authors presented a deep reinforcement learning approach to chip floorplanning, which can automatically generate chip floorplans that are superior or comparable to those produced by humans in all key metrics, including power consumption, performance and chip area.
Proceedings ArticleDOI

MoViNets: Mobile Video Networks for Efficient Video Recognition

TL;DR: MoViNets as mentioned in this paper proposes a three-step approach to improve computational efficiency while substantially reducing the peak memory usage of 3D convolutional neural networks, which can operate on streaming video for online inference.
References
More filters
Proceedings ArticleDOI

Deep Residual Learning for Image Recognition

TL;DR: In this article, the authors proposed a residual learning framework to ease the training of networks that are substantially deeper than those used previously, which won the 1st place on the ILSVRC 2015 classification task.
Proceedings Article

Adam: A Method for Stochastic Optimization

TL;DR: This work introduces Adam, an algorithm for first-order gradient-based optimization of stochastic objective functions, based on adaptive estimates of lower-order moments, and provides a regret bound on the convergence rate that is comparable to the best known results under the online convex optimization framework.
Proceedings Article

Very Deep Convolutional Networks for Large-Scale Image Recognition

TL;DR: This work investigates the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting using an architecture with very small convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers.
Journal ArticleDOI

Gradient-based learning applied to document recognition

TL;DR: In this article, a graph transformer network (GTN) is proposed for handwritten character recognition, which can be used to synthesize a complex decision surface that can classify high-dimensional patterns, such as handwritten characters.
Proceedings ArticleDOI

Histograms of oriented gradients for human detection

TL;DR: It is shown experimentally that grids of histograms of oriented gradient (HOG) descriptors significantly outperform existing feature sets for human detection, and the influence of each stage of the computation on performance is studied.