scispace - formally typeset
Search or ask a question
Posted Content

Neural Architecture Search with Reinforcement Learning

Barret Zoph1, Quoc V. Le1
05 Nov 2016-arXiv: Learning-
TL;DR: This paper uses a recurrent network to generate the model descriptions of neural networks and trains this RNN with reinforcement learning to maximize the expected accuracy of the generated architectures on a validation set.
Abstract: Neural networks are powerful and flexible models that work well for many difficult learning tasks in image, speech and natural language understanding. Despite their success, neural networks are still hard to design. In this paper, we use a recurrent network to generate the model descriptions of neural networks and train this RNN with reinforcement learning to maximize the expected accuracy of the generated architectures on a validation set. On the CIFAR-10 dataset, our method, starting from scratch, can design a novel network architecture that rivals the best human-invented architecture in terms of test set accuracy. Our CIFAR-10 model achieves a test error rate of 3.65, which is 0.09 percent better and 1.05x faster than the previous state-of-the-art model that used a similar architectural scheme. On the Penn Treebank dataset, our model can compose a novel recurrent cell that outperforms the widely-used LSTM cell, and other state-of-the-art baselines. Our cell achieves a test set perplexity of 62.4 on the Penn Treebank, which is 3.6 perplexity better than the previous state-of-the-art model. The cell can also be transferred to the character language modeling task on PTB and achieves a state-of-the-art perplexity of 1.214.
Citations
More filters
Posted Content
Guoxin Cui1, Jun Xu1, Wei Zeng1, Yanyan Lan1, Jiafeng Guo1, Xueqi Cheng1 
TL;DR: Experimental results based on a benchmark dataset showed that MQGrad can accelerate the learning of a large scale deep neural network while keeping its prediction accuracies.
Abstract: One of the most significant bottleneck in training large scale machine learning models on parameter server (PS) is the communication overhead, because it needs to frequently exchange the model gradients between the workers and servers during the training iterations. Gradient quantization has been proposed as an effective approach to reducing the communication volume. One key issue in gradient quantization is setting the number of bits for quantizing the gradients. Small number of bits can significantly reduce the communication overhead while hurts the gradient accuracies, and vise versa. An ideal quantization method would dynamically balance the communication overhead and model accuracy, through adjusting the number bits according to the knowledge learned from the immediate past training iterations. Existing methods, however, quantize the gradients either with fixed number of bits, or with predefined heuristic rules. In this paper we propose a novel adaptive quantization method within the framework of reinforcement learning. The method, referred to as MQGrad, formalizes the selection of quantization bits as actions in a Markov decision process (MDP) where the MDP states records the information collected from the past optimization iterations (e.g., the sequence of the loss function values). During the training iterations of a machine learning algorithm, MQGrad continuously updates the MDP state according to the changes of the loss function. Based on the information, MDP learns to select the optimal actions (number of bits) to quantize the gradients. Experimental results based on a benchmark dataset showed that MQGrad can accelerate the learning of a large scale deep neural network while keeping its prediction accuracies.

4 citations


Cites methods from "Neural Architecture Search with Rei..."

  • ...For example, reinforcement learning algorithms are used for tuning the learning rate [3, 5, 22], for optimizing device placement for Tensor ow computational graphs[15], and for generating network architecture to maximize the expected accuracy of the validate set [23]....

    [...]

Posted Content
TL;DR: The Segmentation-Piror Self-Attention Generative Adversarial Network (SPSAGAN) is proposed to combine segmentation-priors and feature attentions into a unified framework to improve the super-resolution performance and save computation.
Abstract: Convolutional Neural Network (CNN) is intensively implemented to solve super resolution (SR) tasks because of its superior performance. However, the problem of super resolution is still challenging due to the lack of prior knowledge and small receptive field of CNN. We propose the Segmentation-Piror Self-Attention Generative Adversarial Network (SPSAGAN) to combine segmentation-priors and feature attentions into a unified framework. This combination is led by a carefully designed weighted addition to balance the influence of feature and segmentation attentions, so that the network can emphasize textures in the same segmentation category and meanwhile focus on the long-distance feature relationship. We also propose a lightweight skip connection architecture called Residual-in-Residual Sparse Block (RRSB) to further improve the super-resolution performance and save computation. Extensive experiments show that SPSAGAN can generate more realistic and visually pleasing textures compared to state-of-the-art SFTGAN and ESRGAN on many SR datasets.

4 citations


Cites background from "Neural Architecture Search with Rei..."

  • ...[44] utilize reinforcement learning to find compact network structures in the search space....

    [...]

Proceedings ArticleDOI
01 Jan 2020
TL;DR: This work proposes an RPC-based system that is robust to node failures and provides elastic compute abilities, allowing the system to add or remove computational resources as needed, and is demonstrated on the task of neural architecture search for image classification using the CIFAR-10 dataset.
Abstract: Building reliable systems for neural architecture search requires careful design consideration due to the high computational demands coupled with the necessity of fault-tolerance. In this domain, it is not uncommon for applications to crash due to GPU memory exhaustion, which makes fault-tolerance and even more important attribute of a distributed neural architecture search system. We propose an RPC-based system that is robust to node failures and provides elastic compute abilities, allowing the system to add or remove computational resources as needed. The system is demonstrated on the task of neural architecture search for image classification using the CIFAR-10 dataset. Our system achieves near linear scaling and is robust to multiple GPU node failures, allowing the failed nodes to restart and rejoin.

4 citations

Journal ArticleDOI
TL;DR: Zhang et al. as discussed by the authors proposed a self-attentive pathway search framework, namely SAPS, to address the challenges of weakly supervised temporal action localization, which aims to derive frame-level action identifier based on video-level supervision.

4 citations

Posted Content
TL;DR: SAIA is proposed, a Split Artificial Intelligence Architecture for mobile healthcare systems that could not only relies on the cloud computing infrastructure while the wireless communication is available, but also utilizes the lightweight AI solutions that work locally on the client side, hence, it can work even when the communication is impeded.
Abstract: As the advancement of deep learning (DL), the Internet of Things and cloud computing techniques for biomedical and healthcare problems, mobile healthcare systems have received unprecedented attention. Since DL techniques usually require enormous amount of computation, most of them cannot be directly deployed on the resource-constrained mobile and IoT devices. Hence, most of the mobile healthcare systems leverage the cloud computing infrastructure, where the data collected by the mobile and IoT devices would be transmitted to the cloud computing platforms for analysis. However, in the contested environments, relying on the cloud might not be practical at all times. For instance, the satellite communication might be denied or disrupted. We propose SAIA, a Split Artificial Intelligence Architecture for mobile healthcare systems. Unlike traditional approaches for artificial intelligence (AI) which solely exploits the computational power of the cloud server, SAIA could not only relies on the cloud computing infrastructure while the wireless communication is available, but also utilizes the lightweight AI solutions that work locally on the client side, hence, it can work even when the communication is impeded. In SAIA, we propose a meta-information based decision unit, that could tune whether a sample captured by the client should be operated by the embedded AI (i.e., keeping on the client) or the networked AI (i.e., sending to the server), under different conditions. In our experimental evaluation, extensive experiments have been conducted on two popular healthcare datasets. Our results show that SAIA consistently outperforms its baselines in terms of both effectiveness and efficiency.

4 citations

References
More filters
Proceedings ArticleDOI
27 Jun 2016
TL;DR: In this article, the authors proposed a residual learning framework to ease the training of networks that are substantially deeper than those used previously, which won the 1st place on the ILSVRC 2015 classification task.
Abstract: Deeper neural networks are more difficult to train. We present a residual learning framework to ease the training of networks that are substantially deeper than those used previously. We explicitly reformulate the layers as learning residual functions with reference to the layer inputs, instead of learning unreferenced functions. We provide comprehensive empirical evidence showing that these residual networks are easier to optimize, and can gain accuracy from considerably increased depth. On the ImageNet dataset we evaluate residual nets with a depth of up to 152 layers—8× deeper than VGG nets [40] but still having lower complexity. An ensemble of these residual nets achieves 3.57% error on the ImageNet test set. This result won the 1st place on the ILSVRC 2015 classification task. We also present analysis on CIFAR-10 with 100 and 1000 layers. The depth of representations is of central importance for many visual recognition tasks. Solely due to our extremely deep representations, we obtain a 28% relative improvement on the COCO object detection dataset. Deep residual nets are foundations of our submissions to ILSVRC & COCO 2015 competitions1, where we also won the 1st places on the tasks of ImageNet detection, ImageNet localization, COCO detection, and COCO segmentation.

123,388 citations

Proceedings Article
01 Jan 2015
TL;DR: This work introduces Adam, an algorithm for first-order gradient-based optimization of stochastic objective functions, based on adaptive estimates of lower-order moments, and provides a regret bound on the convergence rate that is comparable to the best known results under the online convex optimization framework.
Abstract: We introduce Adam, an algorithm for first-order gradient-based optimization of stochastic objective functions, based on adaptive estimates of lower-order moments. The method is straightforward to implement, is computationally efficient, has little memory requirements, is invariant to diagonal rescaling of the gradients, and is well suited for problems that are large in terms of data and/or parameters. The method is also appropriate for non-stationary objectives and problems with very noisy and/or sparse gradients. The hyper-parameters have intuitive interpretations and typically require little tuning. Some connections to related algorithms, on which Adam was inspired, are discussed. We also analyze the theoretical convergence properties of the algorithm and provide a regret bound on the convergence rate that is comparable to the best known results under the online convex optimization framework. Empirical results demonstrate that Adam works well in practice and compares favorably to other stochastic optimization methods. Finally, we discuss AdaMax, a variant of Adam based on the infinity norm.

111,197 citations

Proceedings Article
04 Sep 2014
TL;DR: This work investigates the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting using an architecture with very small convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers.
Abstract: In this work we investigate the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting. Our main contribution is a thorough evaluation of networks of increasing depth using an architecture with very small (3x3) convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers. These findings were the basis of our ImageNet Challenge 2014 submission, where our team secured the first and the second places in the localisation and classification tracks respectively. We also show that our representations generalise well to other datasets, where they achieve state-of-the-art results. We have made our two best-performing ConvNet models publicly available to facilitate further research on the use of deep visual representations in computer vision.

55,235 citations


"Neural Architecture Search with Rei..." refers methods in this paper

  • ...Along with this success is a paradigm shift from feature designing to architecture designing, i.e., from SIFT (Lowe, 1999), and HOG (Dalal & Triggs, 2005), to AlexNet (Krizhevsky et al., 2012), VGGNet (Simonyan & Zisserman, 2014), GoogleNet (Szegedy et al., 2015), and ResNet (He et al., 2016a)....

    [...]

Journal ArticleDOI
01 Jan 1998
TL;DR: In this article, a graph transformer network (GTN) is proposed for handwritten character recognition, which can be used to synthesize a complex decision surface that can classify high-dimensional patterns, such as handwritten characters.
Abstract: Multilayer neural networks trained with the back-propagation algorithm constitute the best example of a successful gradient based learning technique. Given an appropriate network architecture, gradient-based learning algorithms can be used to synthesize a complex decision surface that can classify high-dimensional patterns, such as handwritten characters, with minimal preprocessing. This paper reviews various methods applied to handwritten character recognition and compares them on a standard handwritten digit recognition task. Convolutional neural networks, which are specifically designed to deal with the variability of 2D shapes, are shown to outperform all other techniques. Real-life document recognition systems are composed of multiple modules including field extraction, segmentation recognition, and language modeling. A new learning paradigm, called graph transformer networks (GTN), allows such multimodule systems to be trained globally using gradient-based methods so as to minimize an overall performance measure. Two systems for online handwriting recognition are described. Experiments demonstrate the advantage of global training, and the flexibility of graph transformer networks. A graph transformer network for reading a bank cheque is also described. It uses convolutional neural network character recognizers combined with global training techniques to provide record accuracy on business and personal cheques. It is deployed commercially and reads several million cheques per day.

42,067 citations

Proceedings ArticleDOI
20 Jun 2005
TL;DR: It is shown experimentally that grids of histograms of oriented gradient (HOG) descriptors significantly outperform existing feature sets for human detection, and the influence of each stage of the computation on performance is studied.
Abstract: We study the question of feature sets for robust visual object recognition; adopting linear SVM based human detection as a test case. After reviewing existing edge and gradient based descriptors, we show experimentally that grids of histograms of oriented gradient (HOG) descriptors significantly outperform existing feature sets for human detection. We study the influence of each stage of the computation on performance, concluding that fine-scale gradients, fine orientation binning, relatively coarse spatial binning, and high-quality local contrast normalization in overlapping descriptor blocks are all important for good results. The new approach gives near-perfect separation on the original MIT pedestrian database, so we introduce a more challenging dataset containing over 1800 annotated human images with a large range of pose variations and backgrounds.

31,952 citations


"Neural Architecture Search with Rei..." refers methods in this paper

  • ...Along with this success is a paradigm shift from feature designing to architecture designing, i.e., from SIFT (Lowe, 1999), and HOG (Dalal & Triggs, 2005), to AlexNet (Krizhevsky et al., 2012), VGGNet (Simonyan & Zisserman, 2014), GoogleNet (Szegedy et al., 2015), and ResNet (He et al., 2016a)....

    [...]