scispace - formally typeset
Search or ask a question
Posted Content

Neural Architecture Search with Reinforcement Learning

Barret Zoph1, Quoc V. Le1
05 Nov 2016-arXiv: Learning-
TL;DR: This paper uses a recurrent network to generate the model descriptions of neural networks and trains this RNN with reinforcement learning to maximize the expected accuracy of the generated architectures on a validation set.
Abstract: Neural networks are powerful and flexible models that work well for many difficult learning tasks in image, speech and natural language understanding. Despite their success, neural networks are still hard to design. In this paper, we use a recurrent network to generate the model descriptions of neural networks and train this RNN with reinforcement learning to maximize the expected accuracy of the generated architectures on a validation set. On the CIFAR-10 dataset, our method, starting from scratch, can design a novel network architecture that rivals the best human-invented architecture in terms of test set accuracy. Our CIFAR-10 model achieves a test error rate of 3.65, which is 0.09 percent better and 1.05x faster than the previous state-of-the-art model that used a similar architectural scheme. On the Penn Treebank dataset, our model can compose a novel recurrent cell that outperforms the widely-used LSTM cell, and other state-of-the-art baselines. Our cell achieves a test set perplexity of 62.4 on the Penn Treebank, which is 3.6 perplexity better than the previous state-of-the-art model. The cell can also be transferred to the character language modeling task on PTB and achieves a state-of-the-art perplexity of 1.214.
Citations
More filters
Journal ArticleDOI
TL;DR: This work proposes SepFusion, a novel framework that can smoothly produce optimal fusion structures for visual-sound separation and provides a series of strong models for broader applications, such as further promoting performance via model assembly, or providing suitable architectures for the separation of certain instrument classes.
Abstract: Multiple modalities can provide rich semantic information; and exploiting such information will normally lead to better performance compared with the single-modality counterpart. However, it is not easy to devise an effective cross-modal fusion structure due to the variations of feature dimensions and semantics, especially when the inputs even come from different sensors, as in the field of audio-visual learning. In this work, we propose SepFusion, a novel framework that can smoothly produce optimal fusion structures for visual-sound separation. The framework is composed of two components, namely the model generator and the evaluator. To construct the generator, we devise a lightweight architecture space that can adapt to different input modalities. In this way, we can easily obtain audio-visual fusion structures according to our demands. For the evaluator, we adopt the idea of neural architecture search to select superior networks effectively. This automatic process can significantly save human efforts while achieving competitive performances. Moreover, since our SepFusion provides a series of strong models, we can utilize the model family for broader applications, such as further promoting performance via model assembly, or providing suitable architectures for the separation of certain instrument classes. These potential applications further enhance the competitiveness of our approach.

2 citations

Posted Content
TL;DR: In this paper, asynchronous successive halving (ASHA) is extended to the multi-objective (MO) setting, where the entire Pareto front is taken into account for candidate selection.
Abstract: Hyperparameter optimization (HPO) is increasingly used to automatically tune the predictive performance (e.g., accuracy) of machine learning models. However, in a plethora of real-world applications, accuracy is only one of the multiple -- often conflicting -- performance criteria, necessitating the adoption of a multi-objective (MO) perspective. While the literature on MO optimization is rich, few prior studies have focused on HPO. In this paper, we propose algorithms that extend asynchronous successive halving (ASHA) to the MO setting. Considering multiple evaluation metrics, we assess the performance of these methods on three real world tasks: (i) Neural architecture search, (ii) algorithmic fairness and (iii) language model optimization. Our empirical analysis shows that MO ASHA enables to perform MO HPO at scale. Further, we observe that that taking the entire Pareto front into account for candidate selection consistently outperforms multi-fidelity HPO based on MO scalarization in terms of wall-clock time. Our algorithms (to be open-sourced) establish new baselines for future research in the area.

2 citations

Proceedings ArticleDOI
TL;DR: In this paper, the Simpson's Diversity Index (SDI) was adapted from biology to diversify the multi-aspect search results, which could help with reducing redundancy and promoting results that might not be shown otherwise.
Abstract: In search and recommendation, diversifying the multi-aspect search results could help with reducing redundancy, and promoting results that might not be shown otherwise. Many previous methods have been proposed for this task. However, previous methods do not explicitly consider the uniformity of the number of the items' classes, or evenness, which could degrade the search and recommendation quality. To address this problem, we introduce a novel method by adapting the Simpson's Diversity Index from biology, which enables a more effective and efficient quadratic search result diversification algorithm. We also extend the method to balance the diversity between multiple aspects through weighted factors and further improve computational complexity by developing a fast approximation algorithm. We demonstrate the feasibility of the proposed method using the openly available Kaggle shoes competition dataset. Our experimental results show that our approach outperforms previous state of the art diversification methods, while reducing computational complexity.

2 citations

Book ChapterDOI
01 Jul 2020
TL;DR: This paper defines some elementary inference operations and shows how modern architectures can be built by a combination of those elementary methods, and determines which elementary learning rules are best suited for unsupervised systems, and proposes some improvements in reinforcement learning architectures.
Abstract: The State of the Art of the young field of Automated Machine Learning (AutoML) is held by the connectionist approach. Several techniques of such an inspiration have recently shown promising results in automatically designing neural network architectures. However, apart from back-propagation, only a few applications of other learning techniques are used for these purposes. The back-propagation process takes advantage of specific optimization techniques that are best suited to specific application domains (e.g., Computer Vision and Natural Language Processing). Hence, the need for a more general learning approach, namely, a basic algorithm able to make inference in different contexts with distinct properties. In this paper, we deal with the problem from a scientific and epistemological point of view. We believe that this is needed to fully understand the mechanisms and dynamics underlying human learning. To this aim, we define some elementary inference operations and show how modern architectures can be built by a combination of those elementary methods. We analyze each method in different settings and find the best-suited application context for each learning algorithm. Furthermore, we discuss experimental findings and compare them with human learning. The discrepancy is particularly evident between supervised and unsupervised learning. Then, we determine which elementary learning rules are best suited for unsupervised systems, and, finally, we propose some improvements in reinforcement learning architectures.

2 citations


Cites background from "Neural Architecture Search with Rei..."

  • ...Early attempts model the system as a reinforcement learning (RL) problem [33]....

    [...]

Book ChapterDOI
29 Nov 2020
TL;DR: In this paper, the authors reimplemented and explored an existing encoding-based method, MENNAG, that appears promising but has received little attention, and showed that this method is able to produce modular neural networks without directly optimizing modularity, as long as the problem has some degree of modular nature.
Abstract: Modularity provides advantages in neuroevolution by improving evolvability or efficiency of connections. Many techniques that leverage modularity, either by utilizing human knowledge or adding additional evolutionary objectives, have been studied. In this work, we reimplemented and explored an existing encoding based method, MENNAG, that appears promising but has received little attention. The algorithm is tested on four tasks that are expected to receive different levels of benefits from modularity. The results show that this method is able to produce modular neural networks without directly optimizing modularity, as long as the problem has some degree of modular nature.

2 citations

References
More filters
Proceedings ArticleDOI
27 Jun 2016
TL;DR: In this article, the authors proposed a residual learning framework to ease the training of networks that are substantially deeper than those used previously, which won the 1st place on the ILSVRC 2015 classification task.
Abstract: Deeper neural networks are more difficult to train. We present a residual learning framework to ease the training of networks that are substantially deeper than those used previously. We explicitly reformulate the layers as learning residual functions with reference to the layer inputs, instead of learning unreferenced functions. We provide comprehensive empirical evidence showing that these residual networks are easier to optimize, and can gain accuracy from considerably increased depth. On the ImageNet dataset we evaluate residual nets with a depth of up to 152 layers—8× deeper than VGG nets [40] but still having lower complexity. An ensemble of these residual nets achieves 3.57% error on the ImageNet test set. This result won the 1st place on the ILSVRC 2015 classification task. We also present analysis on CIFAR-10 with 100 and 1000 layers. The depth of representations is of central importance for many visual recognition tasks. Solely due to our extremely deep representations, we obtain a 28% relative improvement on the COCO object detection dataset. Deep residual nets are foundations of our submissions to ILSVRC & COCO 2015 competitions1, where we also won the 1st places on the tasks of ImageNet detection, ImageNet localization, COCO detection, and COCO segmentation.

123,388 citations

Proceedings Article
01 Jan 2015
TL;DR: This work introduces Adam, an algorithm for first-order gradient-based optimization of stochastic objective functions, based on adaptive estimates of lower-order moments, and provides a regret bound on the convergence rate that is comparable to the best known results under the online convex optimization framework.
Abstract: We introduce Adam, an algorithm for first-order gradient-based optimization of stochastic objective functions, based on adaptive estimates of lower-order moments. The method is straightforward to implement, is computationally efficient, has little memory requirements, is invariant to diagonal rescaling of the gradients, and is well suited for problems that are large in terms of data and/or parameters. The method is also appropriate for non-stationary objectives and problems with very noisy and/or sparse gradients. The hyper-parameters have intuitive interpretations and typically require little tuning. Some connections to related algorithms, on which Adam was inspired, are discussed. We also analyze the theoretical convergence properties of the algorithm and provide a regret bound on the convergence rate that is comparable to the best known results under the online convex optimization framework. Empirical results demonstrate that Adam works well in practice and compares favorably to other stochastic optimization methods. Finally, we discuss AdaMax, a variant of Adam based on the infinity norm.

111,197 citations

Proceedings Article
04 Sep 2014
TL;DR: This work investigates the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting using an architecture with very small convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers.
Abstract: In this work we investigate the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting. Our main contribution is a thorough evaluation of networks of increasing depth using an architecture with very small (3x3) convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers. These findings were the basis of our ImageNet Challenge 2014 submission, where our team secured the first and the second places in the localisation and classification tracks respectively. We also show that our representations generalise well to other datasets, where they achieve state-of-the-art results. We have made our two best-performing ConvNet models publicly available to facilitate further research on the use of deep visual representations in computer vision.

55,235 citations


"Neural Architecture Search with Rei..." refers methods in this paper

  • ...Along with this success is a paradigm shift from feature designing to architecture designing, i.e., from SIFT (Lowe, 1999), and HOG (Dalal & Triggs, 2005), to AlexNet (Krizhevsky et al., 2012), VGGNet (Simonyan & Zisserman, 2014), GoogleNet (Szegedy et al., 2015), and ResNet (He et al., 2016a)....

    [...]

Journal ArticleDOI
01 Jan 1998
TL;DR: In this article, a graph transformer network (GTN) is proposed for handwritten character recognition, which can be used to synthesize a complex decision surface that can classify high-dimensional patterns, such as handwritten characters.
Abstract: Multilayer neural networks trained with the back-propagation algorithm constitute the best example of a successful gradient based learning technique. Given an appropriate network architecture, gradient-based learning algorithms can be used to synthesize a complex decision surface that can classify high-dimensional patterns, such as handwritten characters, with minimal preprocessing. This paper reviews various methods applied to handwritten character recognition and compares them on a standard handwritten digit recognition task. Convolutional neural networks, which are specifically designed to deal with the variability of 2D shapes, are shown to outperform all other techniques. Real-life document recognition systems are composed of multiple modules including field extraction, segmentation recognition, and language modeling. A new learning paradigm, called graph transformer networks (GTN), allows such multimodule systems to be trained globally using gradient-based methods so as to minimize an overall performance measure. Two systems for online handwriting recognition are described. Experiments demonstrate the advantage of global training, and the flexibility of graph transformer networks. A graph transformer network for reading a bank cheque is also described. It uses convolutional neural network character recognizers combined with global training techniques to provide record accuracy on business and personal cheques. It is deployed commercially and reads several million cheques per day.

42,067 citations

Proceedings ArticleDOI
20 Jun 2005
TL;DR: It is shown experimentally that grids of histograms of oriented gradient (HOG) descriptors significantly outperform existing feature sets for human detection, and the influence of each stage of the computation on performance is studied.
Abstract: We study the question of feature sets for robust visual object recognition; adopting linear SVM based human detection as a test case. After reviewing existing edge and gradient based descriptors, we show experimentally that grids of histograms of oriented gradient (HOG) descriptors significantly outperform existing feature sets for human detection. We study the influence of each stage of the computation on performance, concluding that fine-scale gradients, fine orientation binning, relatively coarse spatial binning, and high-quality local contrast normalization in overlapping descriptor blocks are all important for good results. The new approach gives near-perfect separation on the original MIT pedestrian database, so we introduce a more challenging dataset containing over 1800 annotated human images with a large range of pose variations and backgrounds.

31,952 citations


"Neural Architecture Search with Rei..." refers methods in this paper

  • ...Along with this success is a paradigm shift from feature designing to architecture designing, i.e., from SIFT (Lowe, 1999), and HOG (Dalal & Triggs, 2005), to AlexNet (Krizhevsky et al., 2012), VGGNet (Simonyan & Zisserman, 2014), GoogleNet (Szegedy et al., 2015), and ResNet (He et al., 2016a)....

    [...]