scispace - formally typeset
Search or ask a question
Posted Content

Neural Architecture Search with Reinforcement Learning

Barret Zoph1, Quoc V. Le1
05 Nov 2016-arXiv: Learning-
TL;DR: This paper uses a recurrent network to generate the model descriptions of neural networks and trains this RNN with reinforcement learning to maximize the expected accuracy of the generated architectures on a validation set.
Abstract: Neural networks are powerful and flexible models that work well for many difficult learning tasks in image, speech and natural language understanding. Despite their success, neural networks are still hard to design. In this paper, we use a recurrent network to generate the model descriptions of neural networks and train this RNN with reinforcement learning to maximize the expected accuracy of the generated architectures on a validation set. On the CIFAR-10 dataset, our method, starting from scratch, can design a novel network architecture that rivals the best human-invented architecture in terms of test set accuracy. Our CIFAR-10 model achieves a test error rate of 3.65, which is 0.09 percent better and 1.05x faster than the previous state-of-the-art model that used a similar architectural scheme. On the Penn Treebank dataset, our model can compose a novel recurrent cell that outperforms the widely-used LSTM cell, and other state-of-the-art baselines. Our cell achieves a test set perplexity of 62.4 on the Penn Treebank, which is 3.6 perplexity better than the previous state-of-the-art model. The cell can also be transferred to the character language modeling task on PTB and achieves a state-of-the-art perplexity of 1.214.
Citations
More filters
Proceedings ArticleDOI
10 Oct 2022
TL;DR: This paper estimates the probability distribution of different channels based on Bayesian estimation and indicates the importance of the channels by the discrepancy in the distribution before and after channel pruning, and re-parameterize the pruned network based on the probability Distribution to pursue optimal pruning.
Abstract: Filter pruning, as an effective strategy to obtain efficient compact structures from over-parametric deep neural networks(DNN), has attracted a lot of attention. Previous pruning methods select channels for pruning by developing different criteria, yet little attention has been devoted to whether these criteria can represent correlations between channels. Meanwhile, most existing methods generally ignore the parameters being pruned and only perform additional training on the retained network to reduce accuracy loss. In this paper, we present a novel perspective of re-parametric pruning by Bayesian estimation. First, we estimate the probability distribution of different channels based on Bayesian estimation and indicate the importance of the channels by the discrepancy in the distribution before and after channel pruning. Second, to minimize the variation in distribution after pruning, we re-parameterize the pruned network based on the probability distribution to pursue optimal pruning. We evaluate our approach on popular datasets with some typical network architectures, and comprehensive experimental results validate that this method illustrates better performance compared to the state-of-the-art approaches.

1 citations

Journal ArticleDOI
TL;DR: Zhang et al. as discussed by the authors proposed an effective sampling strategy to select the candidate individuals with the potential to maintain the population diversity for environmental selection, and an unified encoding scheme of topological structure and computing operation is designed to efficiently express the search space, and corresponding population update strategies are suggested to promote the convergence.
Abstract: Abstract In recent years, neural architecture search (NAS) has achieved unprecedented development because of its ability to automatically achieve high-performance neural networks in various tasks. Among these, the evolutionary neural architecture search (ENAS) has impressed the researchers due to the excellent heuristic exploration capability. However, the evolutionary algorithm-based NAS are prone to the loss of population diversity in the search process, causing that the structure of the surviving individuals is exceedingly similar, which will lead to premature convergence and fail to explore the search space comprehensively and effectively. To address this issue, we propose a novel indicator, named architecture entropy, which is used to measure the architecture diversity of population. Based on this indicator, an effective sampling strategy is proposed to select the candidate individuals with the potential to maintain the population diversity for environmental selection. In addition, an unified encoding scheme of topological structure and computing operation is designed to efficiently express the search space, and the corresponding population update strategies are suggested to promote the convergence. The experimental results on several image classification benchmark datasets CIFAR-10 and CIFAR-100 demonstrate the superiority of our proposed method over the state-of-the-art comparison ones. To further validate the effectiveness of our method in real applications, our proposed NAS method is applied in the identification of lumbar spine X-ray images for osteoporosis diagnosis, and can achieve a better performance than the commonly used methods. Our source codes are available at https://github.com/LabyrinthineLeo/AEMONAS.

1 citations

Book ChapterDOI
07 Nov 2019
TL;DR: This paper presents an improvement on a recent NAS method, Efficient Neural Architecture Search (ENAS), which is adapted to not only take into account the network’s performance, but also various constraints that would allow these networks to be ported to embedded devices.
Abstract: Recent advances in the field of Neural Architecture Search (NAS) have made it possible to develop state-of-the-art deep learning systems without requiring extensive human expertise and hyperparameter tuning. In most previous research, little concern was given to the resources required to run the generated systems. In this paper, we present an improvement on a recent NAS method, Efficient Neural Architecture Search (ENAS). We adapt ENAS to not only take into account the network’s performance, but also various constraints that would allow these networks to be ported to embedded devices. Our results show ENAS’ ability to comply with these added constraints. In order to show the efficacy of our system, we demonstrate it by designing a Recurrent Neural Network (RNN) that predicts words as they are spoken, and meets the constraints set out for operation on an embedded device.

1 citations

Posted Content
TL;DR: In this article, the authors propose Elastic Architecture Search (EAS), which allows instant specializations at runtime for diverse tasks with various resource constraints, and train the over-parameterized network via a task dropout strategy.
Abstract: We study a new challenging problem of efficient deployment for diverse tasks with different resources, where the resource constraint and task of interest corresponding to a group of classes are dynamically specified at testing time. Previous NAS approaches seek to design architectures for all classes simultaneously, which may not be optimal for some individual tasks. A straightforward solution is to search an architecture from scratch for each deployment scenario, which however is computation-intensive and impractical. To address this, we present a novel and general framework, called Elastic Architecture Search (EAS), permitting instant specializations at runtime for diverse tasks with various resource constraints. To this end, we first propose to effectively train the over-parameterized network via a task dropout strategy to disentangle the tasks during training. In this way, the resulting model is robust to the subsequent task dropping at inference time. Based on the well-trained over-parameterized network, we then propose an efficient architecture generator to obtain optimal architectures within a single forward pass. Experiments on two image classification datasets show that EAS is able to find more compact networks with better performance while remarkably being orders of magnitude faster than state-of-the-art NAS methods. For example, our proposed EAS finds compact architectures within 0.1 second for 50 deployment scenarios.

1 citations

References
More filters
Proceedings ArticleDOI
27 Jun 2016
TL;DR: In this article, the authors proposed a residual learning framework to ease the training of networks that are substantially deeper than those used previously, which won the 1st place on the ILSVRC 2015 classification task.
Abstract: Deeper neural networks are more difficult to train. We present a residual learning framework to ease the training of networks that are substantially deeper than those used previously. We explicitly reformulate the layers as learning residual functions with reference to the layer inputs, instead of learning unreferenced functions. We provide comprehensive empirical evidence showing that these residual networks are easier to optimize, and can gain accuracy from considerably increased depth. On the ImageNet dataset we evaluate residual nets with a depth of up to 152 layers—8× deeper than VGG nets [40] but still having lower complexity. An ensemble of these residual nets achieves 3.57% error on the ImageNet test set. This result won the 1st place on the ILSVRC 2015 classification task. We also present analysis on CIFAR-10 with 100 and 1000 layers. The depth of representations is of central importance for many visual recognition tasks. Solely due to our extremely deep representations, we obtain a 28% relative improvement on the COCO object detection dataset. Deep residual nets are foundations of our submissions to ILSVRC & COCO 2015 competitions1, where we also won the 1st places on the tasks of ImageNet detection, ImageNet localization, COCO detection, and COCO segmentation.

123,388 citations

Proceedings Article
01 Jan 2015
TL;DR: This work introduces Adam, an algorithm for first-order gradient-based optimization of stochastic objective functions, based on adaptive estimates of lower-order moments, and provides a regret bound on the convergence rate that is comparable to the best known results under the online convex optimization framework.
Abstract: We introduce Adam, an algorithm for first-order gradient-based optimization of stochastic objective functions, based on adaptive estimates of lower-order moments. The method is straightforward to implement, is computationally efficient, has little memory requirements, is invariant to diagonal rescaling of the gradients, and is well suited for problems that are large in terms of data and/or parameters. The method is also appropriate for non-stationary objectives and problems with very noisy and/or sparse gradients. The hyper-parameters have intuitive interpretations and typically require little tuning. Some connections to related algorithms, on which Adam was inspired, are discussed. We also analyze the theoretical convergence properties of the algorithm and provide a regret bound on the convergence rate that is comparable to the best known results under the online convex optimization framework. Empirical results demonstrate that Adam works well in practice and compares favorably to other stochastic optimization methods. Finally, we discuss AdaMax, a variant of Adam based on the infinity norm.

111,197 citations

Proceedings Article
04 Sep 2014
TL;DR: This work investigates the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting using an architecture with very small convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers.
Abstract: In this work we investigate the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting. Our main contribution is a thorough evaluation of networks of increasing depth using an architecture with very small (3x3) convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers. These findings were the basis of our ImageNet Challenge 2014 submission, where our team secured the first and the second places in the localisation and classification tracks respectively. We also show that our representations generalise well to other datasets, where they achieve state-of-the-art results. We have made our two best-performing ConvNet models publicly available to facilitate further research on the use of deep visual representations in computer vision.

55,235 citations


"Neural Architecture Search with Rei..." refers methods in this paper

  • ...Along with this success is a paradigm shift from feature designing to architecture designing, i.e., from SIFT (Lowe, 1999), and HOG (Dalal & Triggs, 2005), to AlexNet (Krizhevsky et al., 2012), VGGNet (Simonyan & Zisserman, 2014), GoogleNet (Szegedy et al., 2015), and ResNet (He et al., 2016a)....

    [...]

Journal ArticleDOI
01 Jan 1998
TL;DR: In this article, a graph transformer network (GTN) is proposed for handwritten character recognition, which can be used to synthesize a complex decision surface that can classify high-dimensional patterns, such as handwritten characters.
Abstract: Multilayer neural networks trained with the back-propagation algorithm constitute the best example of a successful gradient based learning technique. Given an appropriate network architecture, gradient-based learning algorithms can be used to synthesize a complex decision surface that can classify high-dimensional patterns, such as handwritten characters, with minimal preprocessing. This paper reviews various methods applied to handwritten character recognition and compares them on a standard handwritten digit recognition task. Convolutional neural networks, which are specifically designed to deal with the variability of 2D shapes, are shown to outperform all other techniques. Real-life document recognition systems are composed of multiple modules including field extraction, segmentation recognition, and language modeling. A new learning paradigm, called graph transformer networks (GTN), allows such multimodule systems to be trained globally using gradient-based methods so as to minimize an overall performance measure. Two systems for online handwriting recognition are described. Experiments demonstrate the advantage of global training, and the flexibility of graph transformer networks. A graph transformer network for reading a bank cheque is also described. It uses convolutional neural network character recognizers combined with global training techniques to provide record accuracy on business and personal cheques. It is deployed commercially and reads several million cheques per day.

42,067 citations

Proceedings ArticleDOI
20 Jun 2005
TL;DR: It is shown experimentally that grids of histograms of oriented gradient (HOG) descriptors significantly outperform existing feature sets for human detection, and the influence of each stage of the computation on performance is studied.
Abstract: We study the question of feature sets for robust visual object recognition; adopting linear SVM based human detection as a test case. After reviewing existing edge and gradient based descriptors, we show experimentally that grids of histograms of oriented gradient (HOG) descriptors significantly outperform existing feature sets for human detection. We study the influence of each stage of the computation on performance, concluding that fine-scale gradients, fine orientation binning, relatively coarse spatial binning, and high-quality local contrast normalization in overlapping descriptor blocks are all important for good results. The new approach gives near-perfect separation on the original MIT pedestrian database, so we introduce a more challenging dataset containing over 1800 annotated human images with a large range of pose variations and backgrounds.

31,952 citations


"Neural Architecture Search with Rei..." refers methods in this paper

  • ...Along with this success is a paradigm shift from feature designing to architecture designing, i.e., from SIFT (Lowe, 1999), and HOG (Dalal & Triggs, 2005), to AlexNet (Krizhevsky et al., 2012), VGGNet (Simonyan & Zisserman, 2014), GoogleNet (Szegedy et al., 2015), and ResNet (He et al., 2016a)....

    [...]