scispace - formally typeset
Search or ask a question
Posted Content

Neural Architecture Search with Reinforcement Learning

Barret Zoph1, Quoc V. Le1
05 Nov 2016-arXiv: Learning-
TL;DR: This paper uses a recurrent network to generate the model descriptions of neural networks and trains this RNN with reinforcement learning to maximize the expected accuracy of the generated architectures on a validation set.
Abstract: Neural networks are powerful and flexible models that work well for many difficult learning tasks in image, speech and natural language understanding. Despite their success, neural networks are still hard to design. In this paper, we use a recurrent network to generate the model descriptions of neural networks and train this RNN with reinforcement learning to maximize the expected accuracy of the generated architectures on a validation set. On the CIFAR-10 dataset, our method, starting from scratch, can design a novel network architecture that rivals the best human-invented architecture in terms of test set accuracy. Our CIFAR-10 model achieves a test error rate of 3.65, which is 0.09 percent better and 1.05x faster than the previous state-of-the-art model that used a similar architectural scheme. On the Penn Treebank dataset, our model can compose a novel recurrent cell that outperforms the widely-used LSTM cell, and other state-of-the-art baselines. Our cell achieves a test set perplexity of 62.4 on the Penn Treebank, which is 3.6 perplexity better than the previous state-of-the-art model. The cell can also be transferred to the character language modeling task on PTB and achieves a state-of-the-art perplexity of 1.214.
Citations
More filters
Proceedings ArticleDOI
14 Jun 2020
TL;DR: This work proposes a hierarchical trinity search framework to simultaneously discover efficient architectures for all components of object detector in an end-to-end manner and empirically reveals that different parts of the detector prefer different operators.
Abstract: Neural Architecture Search (NAS) has achieved great success in image classification task. Some recent works have managed to explore the automatic design of efficient backbone or feature fusion layer for object detection. However, these methods focus on searching only one certain component of object detector while leaving others manually designed. We identify the inconsistency between searched component and manually designed ones would withhold the detector of stronger performance. To this end, we propose a hierarchical trinity search framework to simultaneously discover efficient architectures for all components (\ie backbone, neck, and head) of object detector in an end-to-end manner. In addition, we empirically reveal that different parts of the detector prefer different operators. Motivated by this, we employ a novel scheme to automatically screen different sub search spaces for different components so as to perform the end-to-end search for each component on the corresponding sub search space efficiently. Without bells and whistles, our searched architecture, namely Hit-Detector, achieves 41.4\% mAP on COCO minival set with 27M parameters. Our implementation is available at \href{https://github.com/ggjy/HitDet.pytorch}{https://github.com/ggjy/HitDet.pytorch}.

84 citations


Cites background or methods from "Neural Architecture Search with Rei..."

  • ...Thus neural architecture search (NAS) that automates the design of network architectures and minimizes human labor has drawn much attention and made impressive progress, especially in image classification tasks [57, 29, 45, 31, 43, 46, 48, 55, 17]....

    [...]

  • ...forcement learning based methods [1, 3, 57, 58, 29] train a RNN controller to generate cell structure and form the network accordingly....

    [...]

Posted Content
TL;DR: Mish as discussed by the authors is a self-regularized non-monotonic activation function which can be mathematically defined as: f(x)=x\tanh(softplus(x)).
Abstract: We propose $\textit{Mish}$, a novel self-regularized non-monotonic activation function which can be mathematically defined as: $f(x)=x\tanh(softplus(x))$. As activation functions play a crucial role in the performance and training dynamics in neural networks, we validated experimentally on several well-known benchmarks against the best combinations of architectures and activation functions. We also observe that data augmentation techniques have a favorable effect on benchmarks like ImageNet-1k and MS-COCO across multiple architectures. For example, Mish outperformed Leaky ReLU on YOLOv4 with a CSP-DarkNet-53 backbone on average precision ($AP_{50}^{val}$) by 2.1$\%$ in MS-COCO object detection and ReLU on ResNet-50 on ImageNet-1k in Top-1 accuracy by $\approx$1$\%$ while keeping all other network parameters and hyperparameters constant. Furthermore, we explore the mathematical formulation of Mish in relation with the Swish family of functions and propose an intuitive understanding on how the first derivative behavior may be acting as a regularizer helping the optimization of deep neural networks. Code is publicly available at this https URL.

84 citations

Posted Content
TL;DR: A Neuromodulated Meta-Learning Algorithm (ANML) enables continual learning without catastrophic forgetting at scale: it produces state-of-the-art continual learning performance, sequentially learning as many as 600 classes (over 9,000 SGD updates).
Abstract: Continual lifelong learning requires an agent or model to learn many sequentially ordered tasks, building on previous knowledge without catastrophically forgetting it. Much work has gone towards preventing the default tendency of machine learning models to catastrophically forget, yet virtually all such work involves manually-designed solutions to the problem. We instead advocate meta-learning a solution to catastrophic forgetting, allowing AI to learn to continually learn. Inspired by neuromodulatory processes in the brain, we propose A Neuromodulated Meta-Learning Algorithm (ANML). It differentiates through a sequential learning process to meta-learn an activation-gating function that enables context-dependent selective activation within a deep neural network. Specifically, a neuromodulatory (NM) neural network gates the forward pass of another (otherwise normal) neural network called the prediction learning network (PLN). The NM network also thus indirectly controls selective plasticity (i.e. the backward pass of) the PLN. ANML enables continual learning without catastrophic forgetting at scale: it produces state-of-the-art continual learning performance, sequentially learning as many as 600 classes (over 9,000 SGD updates).

84 citations

Posted Content
TL;DR: NASBOT as discussed by the authors is a Gaussian process based framework for neural architecture search, which uses a distance metric in the space of neural network architectures which can be computed efficiently via an optimal transport program.
Abstract: Bayesian Optimisation (BO) refers to a class of methods for global optimisation of a function $f$ which is only accessible via point evaluations. It is typically used in settings where $f$ is expensive to evaluate. A common use case for BO in machine learning is model selection, where it is not possible to analytically model the generalisation performance of a statistical model, and we resort to noisy and expensive training and validation procedures to choose the best model. Conventional BO methods have focused on Euclidean and categorical domains, which, in the context of model selection, only permits tuning scalar hyper-parameters of machine learning algorithms. However, with the surge of interest in deep learning, there is an increasing demand to tune neural network \emph{architectures}. In this work, we develop NASBOT, a Gaussian process based BO framework for neural architecture search. To accomplish this, we develop a distance metric in the space of neural network architectures which can be computed efficiently via an optimal transport program. This distance might be of independent interest to the deep learning community as it may find applications outside of BO. We demonstrate that NASBOT outperforms other alternatives for architecture search in several cross validation based model selection tasks on multi-layer perceptrons and convolutional neural networks.

83 citations

Journal ArticleDOI
TL;DR: In this article, a self-adaptive mutation neural architecture search algorithm based on ResNet blocks and DenseNet blocks is proposed, which makes the algorithm adaptively adjust the mutation strategies during the evolution process to achieve better exploration.
Abstract: Recently, convolutional neural networks (CNNs) have achieved great success in the field of artificial intelligence, including speech recognition, image recognition, and natural language processing. CNN architecture plays a key role in CNNs' performance. Most previous CNN architectures are hand-crafted, which requires designers to have rich expert domain knowledge. The trial-and-error process consumes a lot of time and computing resources. To solve this problem, researchers proposed the neural architecture search, which searches CNN architecture automatically, to satisfy different requirements. However, the blindness of the search strategy causes a 'loss of experience' in the early stage of the search process, and ultimately affects the results of the later stage. In this paper, we propose a self-adaptive mutation neural architecture search algorithm based on ResNet blocks and DenseNet blocks. The self-adaptive mutation strategy makes the algorithm adaptively adjust the mutation strategies during the evolution process to achieve better exploration. In addition, the whole search process is fully automatic, and users do not need expert knowledge about CNNs architecture design. In this paper, the proposed algorithm is compared with 17 state-of-the-art algorithms, including manually designed CNN and automatic search algorithms on CIFAR10 and CIFAR100. The results indicate that the proposed algorithm outperforms the competitors in terms of classification performance and consumes fewer computing resources.

83 citations

References
More filters
Proceedings ArticleDOI
27 Jun 2016
TL;DR: In this article, the authors proposed a residual learning framework to ease the training of networks that are substantially deeper than those used previously, which won the 1st place on the ILSVRC 2015 classification task.
Abstract: Deeper neural networks are more difficult to train. We present a residual learning framework to ease the training of networks that are substantially deeper than those used previously. We explicitly reformulate the layers as learning residual functions with reference to the layer inputs, instead of learning unreferenced functions. We provide comprehensive empirical evidence showing that these residual networks are easier to optimize, and can gain accuracy from considerably increased depth. On the ImageNet dataset we evaluate residual nets with a depth of up to 152 layers—8× deeper than VGG nets [40] but still having lower complexity. An ensemble of these residual nets achieves 3.57% error on the ImageNet test set. This result won the 1st place on the ILSVRC 2015 classification task. We also present analysis on CIFAR-10 with 100 and 1000 layers. The depth of representations is of central importance for many visual recognition tasks. Solely due to our extremely deep representations, we obtain a 28% relative improvement on the COCO object detection dataset. Deep residual nets are foundations of our submissions to ILSVRC & COCO 2015 competitions1, where we also won the 1st places on the tasks of ImageNet detection, ImageNet localization, COCO detection, and COCO segmentation.

123,388 citations

Proceedings Article
01 Jan 2015
TL;DR: This work introduces Adam, an algorithm for first-order gradient-based optimization of stochastic objective functions, based on adaptive estimates of lower-order moments, and provides a regret bound on the convergence rate that is comparable to the best known results under the online convex optimization framework.
Abstract: We introduce Adam, an algorithm for first-order gradient-based optimization of stochastic objective functions, based on adaptive estimates of lower-order moments. The method is straightforward to implement, is computationally efficient, has little memory requirements, is invariant to diagonal rescaling of the gradients, and is well suited for problems that are large in terms of data and/or parameters. The method is also appropriate for non-stationary objectives and problems with very noisy and/or sparse gradients. The hyper-parameters have intuitive interpretations and typically require little tuning. Some connections to related algorithms, on which Adam was inspired, are discussed. We also analyze the theoretical convergence properties of the algorithm and provide a regret bound on the convergence rate that is comparable to the best known results under the online convex optimization framework. Empirical results demonstrate that Adam works well in practice and compares favorably to other stochastic optimization methods. Finally, we discuss AdaMax, a variant of Adam based on the infinity norm.

111,197 citations

Proceedings Article
04 Sep 2014
TL;DR: This work investigates the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting using an architecture with very small convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers.
Abstract: In this work we investigate the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting. Our main contribution is a thorough evaluation of networks of increasing depth using an architecture with very small (3x3) convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers. These findings were the basis of our ImageNet Challenge 2014 submission, where our team secured the first and the second places in the localisation and classification tracks respectively. We also show that our representations generalise well to other datasets, where they achieve state-of-the-art results. We have made our two best-performing ConvNet models publicly available to facilitate further research on the use of deep visual representations in computer vision.

55,235 citations


"Neural Architecture Search with Rei..." refers methods in this paper

  • ...Along with this success is a paradigm shift from feature designing to architecture designing, i.e., from SIFT (Lowe, 1999), and HOG (Dalal & Triggs, 2005), to AlexNet (Krizhevsky et al., 2012), VGGNet (Simonyan & Zisserman, 2014), GoogleNet (Szegedy et al., 2015), and ResNet (He et al., 2016a)....

    [...]

Journal ArticleDOI
01 Jan 1998
TL;DR: In this article, a graph transformer network (GTN) is proposed for handwritten character recognition, which can be used to synthesize a complex decision surface that can classify high-dimensional patterns, such as handwritten characters.
Abstract: Multilayer neural networks trained with the back-propagation algorithm constitute the best example of a successful gradient based learning technique. Given an appropriate network architecture, gradient-based learning algorithms can be used to synthesize a complex decision surface that can classify high-dimensional patterns, such as handwritten characters, with minimal preprocessing. This paper reviews various methods applied to handwritten character recognition and compares them on a standard handwritten digit recognition task. Convolutional neural networks, which are specifically designed to deal with the variability of 2D shapes, are shown to outperform all other techniques. Real-life document recognition systems are composed of multiple modules including field extraction, segmentation recognition, and language modeling. A new learning paradigm, called graph transformer networks (GTN), allows such multimodule systems to be trained globally using gradient-based methods so as to minimize an overall performance measure. Two systems for online handwriting recognition are described. Experiments demonstrate the advantage of global training, and the flexibility of graph transformer networks. A graph transformer network for reading a bank cheque is also described. It uses convolutional neural network character recognizers combined with global training techniques to provide record accuracy on business and personal cheques. It is deployed commercially and reads several million cheques per day.

42,067 citations

Proceedings ArticleDOI
20 Jun 2005
TL;DR: It is shown experimentally that grids of histograms of oriented gradient (HOG) descriptors significantly outperform existing feature sets for human detection, and the influence of each stage of the computation on performance is studied.
Abstract: We study the question of feature sets for robust visual object recognition; adopting linear SVM based human detection as a test case. After reviewing existing edge and gradient based descriptors, we show experimentally that grids of histograms of oriented gradient (HOG) descriptors significantly outperform existing feature sets for human detection. We study the influence of each stage of the computation on performance, concluding that fine-scale gradients, fine orientation binning, relatively coarse spatial binning, and high-quality local contrast normalization in overlapping descriptor blocks are all important for good results. The new approach gives near-perfect separation on the original MIT pedestrian database, so we introduce a more challenging dataset containing over 1800 annotated human images with a large range of pose variations and backgrounds.

31,952 citations


"Neural Architecture Search with Rei..." refers methods in this paper

  • ...Along with this success is a paradigm shift from feature designing to architecture designing, i.e., from SIFT (Lowe, 1999), and HOG (Dalal & Triggs, 2005), to AlexNet (Krizhevsky et al., 2012), VGGNet (Simonyan & Zisserman, 2014), GoogleNet (Szegedy et al., 2015), and ResNet (He et al., 2016a)....

    [...]