scispace - formally typeset
Search or ask a question
Posted Content

Neural Architecture Search with Reinforcement Learning

Barret Zoph1, Quoc V. Le1
05 Nov 2016-arXiv: Learning-
TL;DR: This paper uses a recurrent network to generate the model descriptions of neural networks and trains this RNN with reinforcement learning to maximize the expected accuracy of the generated architectures on a validation set.
Abstract: Neural networks are powerful and flexible models that work well for many difficult learning tasks in image, speech and natural language understanding. Despite their success, neural networks are still hard to design. In this paper, we use a recurrent network to generate the model descriptions of neural networks and train this RNN with reinforcement learning to maximize the expected accuracy of the generated architectures on a validation set. On the CIFAR-10 dataset, our method, starting from scratch, can design a novel network architecture that rivals the best human-invented architecture in terms of test set accuracy. Our CIFAR-10 model achieves a test error rate of 3.65, which is 0.09 percent better and 1.05x faster than the previous state-of-the-art model that used a similar architectural scheme. On the Penn Treebank dataset, our model can compose a novel recurrent cell that outperforms the widely-used LSTM cell, and other state-of-the-art baselines. Our cell achieves a test set perplexity of 62.4 on the Penn Treebank, which is 3.6 perplexity better than the previous state-of-the-art model. The cell can also be transferred to the character language modeling task on PTB and achieves a state-of-the-art perplexity of 1.214.
Citations
More filters
Posted Content
TL;DR: FasterSeg as mentioned in this paper proposes a decoupled and fine-grained latency regularization, which effectively overcomes the observed phenomenons that the searched networks are prone to collapse to low-latency yet poor-accuracy models.
Abstract: We present FasterSeg, an automatically designed semantic segmentation network with not only state-of-the-art performance but also faster speed than current methods. Utilizing neural architecture search (NAS), FasterSeg is discovered from a novel and broader search space integrating multi-resolution branches, that has been recently found to be vital in manually designed segmentation models. To better calibrate the balance between the goals of high accuracy and low latency, we propose a decoupled and fine-grained latency regularization, that effectively overcomes our observed phenomenons that the searched networks are prone to "collapsing" to low-latency yet poor-accuracy models. Moreover, we seamlessly extend FasterSeg to a new collaborative search (co-searching) framework, simultaneously searching for a teacher and a student network in the same single run. The teacher-student distillation further boosts the student model's accuracy. Experiments on popular segmentation benchmarks demonstrate the competency of FasterSeg. For example, FasterSeg can run over 30% faster than the closest manually designed competitor on Cityscapes, while maintaining comparable accuracy.

71 citations

Posted Content
27 Jun 2018
TL;DR: A novel framework enabling Bayesian optimization to guide the network morphism for efficient neural architecture search by introducing a neural network kernel and a tree-structured acquisition function optimization algorithm, which more efficiently explores the search space is proposed.
Abstract: Neural architecture search (NAS) has been proposed to automatically tune deep neural networks, but existing search algorithms, e.g., NASNet, PNAS, usually suffer from expensive computational cost. Network morphism, which keeps the functionality of a neural network while changing its neural architecture, could be helpful for NAS by enabling more efficient training during the search. In this paper, we propose a novel framework enabling Bayesian optimization to guide the network morphism for efficient neural architecture search. The framework develops a neural network kernel and a tree-structured acquisition function optimization algorithm to efficiently explores the search space. Intensive experiments on real-world benchmark datasets have been done to demonstrate the superior performance of the developed framework over the state-of-the-art methods. Moreover, we build an open-source AutoML system based on our method, namely Auto-Keras. The system runs in parallel on CPU and GPU, with an adaptive search strategy for different GPU memory limits.

71 citations


Cites background from "Neural Architecture Search with Rei..."

  • ...Many NAS approaches, such as deep reinforcement learning (Zoph & Le, 2016; Baker et al., 2016; Zhong et al., 2017; Pham et al., 2018) and evolutionary algorithms (Real et al., 2017; Desell, 2017; Liu et al., 2017; Suganuma et al., 2017; Xie & Yuille, 2017; Real et al., 2018), require a large n to…...

    [...]

Proceedings ArticleDOI
25 Jun 2019
TL;DR: Alpine Meadow is able to significantly outperform the other AutoML systems while --- in contrast to the other systems --- providing interactive latencies, but also outperforms in 80% of the cases expert solutions over data sets the authors have never seen before.
Abstract: Statistical knowledge and domain expertise are key to extract actionable insights out of data, yet such skills rarely coexist together. In Machine Learning, high-quality results are only attainable via mindful data preprocessing, hyperparameter tuning and model selection. Domain experts are often overwhelmed by such complexity, de-facto inhibiting a wider adoption of ML techniques in other fields. Existing libraries that claim to solve this problem, still require well-trained practitioners. Those frameworks involve heavy data preparation steps and are often too slow for interactive feedback from the user, severely limiting the scope of such systems. In this paper we present Alpine Meadow, a first Interactive Automated Machine Learning tool. What makes our system unique is not only the focus on interactivity, but also the combined systemic and algorithmic design approach; on one hand we leverage ideas from query optimization, on the other we devise novel selection and pruning strategies combining cost-based Multi-Armed Bandits and Bayesian Optimization. We evaluate our system on over 300 datasets and compare against other AutoML tools, including the current NIPS winner, as well as expert solutions. Not only is Alpine Meadow able to significantly outperform the other AutoML systems while --- in contrast to the other systems --- providing interactive latencies, but also outperforms in 80% of the cases expert solutions over data sets we have never seen before.

71 citations


Cites background or methods from "Neural Architecture Search with Rei..."

  • ...The closest existing solutions, which allow such end-toend training are probably the recent Learning to Learn approaches to nd neural net (NN) architectures [3, 45]....

    [...]

  • ...Neural networks are hard to design from scratch, and there are many proposed solution using similar Bayesian Optimization [5, 25] or Reinforcement Learning techniques [45]....

    [...]

  • ...AutoML Systems: Most automated ML systems focus on automated learning algorithm selection and hyper-parameter tuning [4, 6, 13, 23, 24, 36, 45] to make machine learning curation fully automated for non-ML experts....

    [...]

Proceedings ArticleDOI
26 Sep 2017
TL;DR: Recently, this paper proposed EDEN, a neuro-evolutionary algorithm for deep neural networks, which can evolve simple yet successful architectures built from embedding, 1D and 2D convolutional, max pooling and fully connected layers along with their hyperparameters.
Abstract: Deep neural networks continue to show improved performance with increasing depth, an encouraging trend that implies an explosion in the possible permutations of network architectures and hyperparameters for which there is little intuitive guidance. To address this increasing complexity, we propose Evolutionary DEep Networks (EDEN), a computationally efficient neuro-evolutionary algorithm which interfaces to any deep neural network platform, such as TensorFlow. We show that EDEN evolves simple yet successful architectures built from embedding, 1D and 2D convolutional, max pooling and fully connected layers along with their hyperparameters. Evaluation of EDEN across seven image and sentiment classification datasets shows that it reliably finds good networks — and in three cases achieves state-of-the-art results — even on a single GPU, in just 6–24 hours. Our study provides a first attempt at applying neuro-evolution to the creation of 1D convolutional networks for sentiment analysis including the optimisation of the embedding layer.

70 citations

Posted Content
TL;DR: The searched architecture improves a variety of vision applications from Neural Style Transfer, to Image Captioning and Object Detection, and 3x and 2.8x speedup over Random Search and Regularized Evolution are shown.
Abstract: Neural Architecture Search (NAS) has shown great success in automating the design of neural networks, but the prohibitive amount of computations behind current NAS methods requires further investigations in improving the sample efficiency and the network evaluation cost to get better results in a shorter time. In this paper, we present a novel scalable Monte Carlo Tree Search (MCTS) based NAS agent, named AlphaX, to tackle these two aspects. AlphaX improves the search efficiency by adaptively balancing the exploration and exploitation at the state level, and by a Meta-Deep Neural Network (DNN) to predict network accuracies for biasing the search toward a promising region. To amortize the network evaluation cost, AlphaX accelerates MCTS rollouts with a distributed design and reduces the number of epochs in evaluating a network by transfer learning guided with the tree structure in MCTS. In 12 GPU days and 1000 samples, AlphaX found an architecture that reaches 97.84\% top-1 accuracy on CIFAR-10, and 75.5\% top-1 accuracy on ImageNet, exceeding SOTA NAS methods in both the accuracy and sampling efficiency. Particularly, we also evaluate AlphaX on NASBench-101, a large scale NAS dataset; AlphaX is 3x and 2.8x more sample efficient than Random Search and Regularized Evolution in finding the global optimum. Finally, we show the searched architecture improves a variety of vision applications from Neural Style Transfer, to Image Captioning and Object Detection.

70 citations


Cites background or methods from "Neural Architecture Search with Rei..."

  • ...Reinforcement Learning (RL): Several RL techniques have been investigated for NAS [2, 48]....

    [...]

  • ...Zoph et al. built an RNN agent trained with Policy Gradient to design CNN and LSTM [64]....

    [...]

  • ...built an RNN agent trained with Policy Gradient to design CNN and LSTM [48]....

    [...]

  • ...MetaQNN (QL) [2] × -greedy × × Zoph (PG)[48] × RNN √ √...

    [...]

References
More filters
Proceedings ArticleDOI
27 Jun 2016
TL;DR: In this article, the authors proposed a residual learning framework to ease the training of networks that are substantially deeper than those used previously, which won the 1st place on the ILSVRC 2015 classification task.
Abstract: Deeper neural networks are more difficult to train. We present a residual learning framework to ease the training of networks that are substantially deeper than those used previously. We explicitly reformulate the layers as learning residual functions with reference to the layer inputs, instead of learning unreferenced functions. We provide comprehensive empirical evidence showing that these residual networks are easier to optimize, and can gain accuracy from considerably increased depth. On the ImageNet dataset we evaluate residual nets with a depth of up to 152 layers—8× deeper than VGG nets [40] but still having lower complexity. An ensemble of these residual nets achieves 3.57% error on the ImageNet test set. This result won the 1st place on the ILSVRC 2015 classification task. We also present analysis on CIFAR-10 with 100 and 1000 layers. The depth of representations is of central importance for many visual recognition tasks. Solely due to our extremely deep representations, we obtain a 28% relative improvement on the COCO object detection dataset. Deep residual nets are foundations of our submissions to ILSVRC & COCO 2015 competitions1, where we also won the 1st places on the tasks of ImageNet detection, ImageNet localization, COCO detection, and COCO segmentation.

123,388 citations

Proceedings Article
01 Jan 2015
TL;DR: This work introduces Adam, an algorithm for first-order gradient-based optimization of stochastic objective functions, based on adaptive estimates of lower-order moments, and provides a regret bound on the convergence rate that is comparable to the best known results under the online convex optimization framework.
Abstract: We introduce Adam, an algorithm for first-order gradient-based optimization of stochastic objective functions, based on adaptive estimates of lower-order moments. The method is straightforward to implement, is computationally efficient, has little memory requirements, is invariant to diagonal rescaling of the gradients, and is well suited for problems that are large in terms of data and/or parameters. The method is also appropriate for non-stationary objectives and problems with very noisy and/or sparse gradients. The hyper-parameters have intuitive interpretations and typically require little tuning. Some connections to related algorithms, on which Adam was inspired, are discussed. We also analyze the theoretical convergence properties of the algorithm and provide a regret bound on the convergence rate that is comparable to the best known results under the online convex optimization framework. Empirical results demonstrate that Adam works well in practice and compares favorably to other stochastic optimization methods. Finally, we discuss AdaMax, a variant of Adam based on the infinity norm.

111,197 citations

Proceedings Article
04 Sep 2014
TL;DR: This work investigates the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting using an architecture with very small convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers.
Abstract: In this work we investigate the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting. Our main contribution is a thorough evaluation of networks of increasing depth using an architecture with very small (3x3) convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers. These findings were the basis of our ImageNet Challenge 2014 submission, where our team secured the first and the second places in the localisation and classification tracks respectively. We also show that our representations generalise well to other datasets, where they achieve state-of-the-art results. We have made our two best-performing ConvNet models publicly available to facilitate further research on the use of deep visual representations in computer vision.

55,235 citations


"Neural Architecture Search with Rei..." refers methods in this paper

  • ...Along with this success is a paradigm shift from feature designing to architecture designing, i.e., from SIFT (Lowe, 1999), and HOG (Dalal & Triggs, 2005), to AlexNet (Krizhevsky et al., 2012), VGGNet (Simonyan & Zisserman, 2014), GoogleNet (Szegedy et al., 2015), and ResNet (He et al., 2016a)....

    [...]

Journal ArticleDOI
01 Jan 1998
TL;DR: In this article, a graph transformer network (GTN) is proposed for handwritten character recognition, which can be used to synthesize a complex decision surface that can classify high-dimensional patterns, such as handwritten characters.
Abstract: Multilayer neural networks trained with the back-propagation algorithm constitute the best example of a successful gradient based learning technique. Given an appropriate network architecture, gradient-based learning algorithms can be used to synthesize a complex decision surface that can classify high-dimensional patterns, such as handwritten characters, with minimal preprocessing. This paper reviews various methods applied to handwritten character recognition and compares them on a standard handwritten digit recognition task. Convolutional neural networks, which are specifically designed to deal with the variability of 2D shapes, are shown to outperform all other techniques. Real-life document recognition systems are composed of multiple modules including field extraction, segmentation recognition, and language modeling. A new learning paradigm, called graph transformer networks (GTN), allows such multimodule systems to be trained globally using gradient-based methods so as to minimize an overall performance measure. Two systems for online handwriting recognition are described. Experiments demonstrate the advantage of global training, and the flexibility of graph transformer networks. A graph transformer network for reading a bank cheque is also described. It uses convolutional neural network character recognizers combined with global training techniques to provide record accuracy on business and personal cheques. It is deployed commercially and reads several million cheques per day.

42,067 citations

Proceedings ArticleDOI
20 Jun 2005
TL;DR: It is shown experimentally that grids of histograms of oriented gradient (HOG) descriptors significantly outperform existing feature sets for human detection, and the influence of each stage of the computation on performance is studied.
Abstract: We study the question of feature sets for robust visual object recognition; adopting linear SVM based human detection as a test case. After reviewing existing edge and gradient based descriptors, we show experimentally that grids of histograms of oriented gradient (HOG) descriptors significantly outperform existing feature sets for human detection. We study the influence of each stage of the computation on performance, concluding that fine-scale gradients, fine orientation binning, relatively coarse spatial binning, and high-quality local contrast normalization in overlapping descriptor blocks are all important for good results. The new approach gives near-perfect separation on the original MIT pedestrian database, so we introduce a more challenging dataset containing over 1800 annotated human images with a large range of pose variations and backgrounds.

31,952 citations


"Neural Architecture Search with Rei..." refers methods in this paper

  • ...Along with this success is a paradigm shift from feature designing to architecture designing, i.e., from SIFT (Lowe, 1999), and HOG (Dalal & Triggs, 2005), to AlexNet (Krizhevsky et al., 2012), VGGNet (Simonyan & Zisserman, 2014), GoogleNet (Szegedy et al., 2015), and ResNet (He et al., 2016a)....

    [...]