scispace - formally typeset
Search or ask a question
Posted Content

Neural Architecture Search with Reinforcement Learning

Barret Zoph1, Quoc V. Le1
05 Nov 2016-arXiv: Learning-
TL;DR: This paper uses a recurrent network to generate the model descriptions of neural networks and trains this RNN with reinforcement learning to maximize the expected accuracy of the generated architectures on a validation set.
Abstract: Neural networks are powerful and flexible models that work well for many difficult learning tasks in image, speech and natural language understanding. Despite their success, neural networks are still hard to design. In this paper, we use a recurrent network to generate the model descriptions of neural networks and train this RNN with reinforcement learning to maximize the expected accuracy of the generated architectures on a validation set. On the CIFAR-10 dataset, our method, starting from scratch, can design a novel network architecture that rivals the best human-invented architecture in terms of test set accuracy. Our CIFAR-10 model achieves a test error rate of 3.65, which is 0.09 percent better and 1.05x faster than the previous state-of-the-art model that used a similar architectural scheme. On the Penn Treebank dataset, our model can compose a novel recurrent cell that outperforms the widely-used LSTM cell, and other state-of-the-art baselines. Our cell achieves a test set perplexity of 62.4 on the Penn Treebank, which is 3.6 perplexity better than the previous state-of-the-art model. The cell can also be transferred to the character language modeling task on PTB and achieves a state-of-the-art perplexity of 1.214.
Citations
More filters
Posted Content
TL;DR: This paper proposes a new method, evolution of a tree-based encoding of the gated memory nodes, and shows that it makes it possible to explore new variations more effectively than other methods, and discovers nodes with multiple recurrent paths and multiple memory cells, which lead to significant improvement in the standard language modeling benchmark task.
Abstract: Gated recurrent networks such as those composed of Long Short-Term Memory (LSTM) nodes have recently been used to improve state of the art in many sequential processing tasks such as speech recognition and machine translation. However, the basic structure of the LSTM node is essentially the same as when it was first conceived 25 years ago. Recently, evolutionary and reinforcement learning mechanisms have been employed to create new variations of this structure. This paper proposes a new method, evolution of a tree-based encoding of the gated memory nodes, and shows that it makes it possible to explore new variations more effectively than other methods. The method discovers nodes with multiple recurrent paths and multiple memory cells, which lead to significant improvement in the standard language modeling benchmark task. The paper also shows how the search process can be speeded up by training an LSTM network to estimate performance of candidate structures, and by encouraging exploration of novel solutions. Thus, evolutionary design of complex neural network structures promises to improve performance of deep learning architectures beyond human ability to do so.

47 citations


Cites background or methods from "Neural Architecture Search with Rei..."

  • ...(2) Unlike in NAS, different leaf elements can occur at varying depths in GP. (3) NAS adds several constraint to the tree structure....

    [...]

  • ...(4) In NAS, inputs to the tree are used only once; in GP, the inputs can be used multiple times within a node....

    [...]

  • ...[26] used 800 GPUs for training multiple such solutions in parallel....

    [...]

  • ...As shown by recent research [26] [25], the recurrent node in itself can be considered a deep network....

    [...]

  • ...However, very recent studies on metalearning methods such as neural architecture search and evolutionary optimization have shown that LSTM performance can be improved by complexifying it further [26] [8]....

    [...]

Proceedings ArticleDOI
01 Oct 2019
TL;DR: Online Hyper-parameter Learning for Auto-Augmentation (OHL-Auto-Aug) as discussed by the authors formulates the augmentation policy as a parameterized probability distribution, thus allowing its parameters to be optimized jointly with network parameters.
Abstract: Data augmentation is critical to the success of modern deep learning techniques. In this paper, we propose Online Hyper-parameter Learning for Auto-Augmentation (OHL-Auto-Aug), an economical solution that learns the augmentation policy distribution along with network training. Unlike previous methods on auto-augmentation that search augmentation strategies in an offline manner, our method formulates the augmentation policy as a parameterized probability distribution, thus allowing its parameters to be optimized jointly with network parameters. Our proposed OHL-Auto-Aug eliminates the need of re-training and dramatically reduces the cost of the overall search process, while establishes significantly accuracy improvements over baseline models. On both CIFAR-10 and ImageNet, our method achieves remarkable on search accuracy, 60x faster on CIFAR-10 and 24x faster on ImageNet, while maintaining competitive accuracies.

46 citations

Posted Content
TL;DR: This paper proposes AutoML for Loss Function Search (AM-LFS) which leverages REINFORCE to search loss functions during the training process and proposes an efficient optimization framework which can dynamically optimize the parameters of loss function's distribution during training.
Abstract: Designing an effective loss function plays an important role in visual analysis. Most existing loss function designs rely on hand-crafted heuristics that require domain experts to explore the large design space, which is usually sub-optimal and time-consuming. In this paper, we propose AutoML for Loss Function Search (AM-LFS) which leverages REINFORCE to search loss functions during the training process. The key contribution of this work is the design of search space which can guarantee the generalization and transferability on different vision tasks by including a bunch of existing prevailing loss functions in a unified formulation. We also propose an efficient optimization framework which can dynamically optimize the parameters of loss function's distribution during training. Extensive experimental results on four benchmark datasets show that, without any tricks, our method outperforms existing hand-crafted loss functions in various computer vision tasks.

46 citations


Cites methods from "Neural Architecture Search with Rei..."

  • ...NAS utilizes reinforcement learning [47, 46] and genetic algorithms [27, 42, 31] to search the transferable network blocks whose performance surpasses many manually designed architectures....

    [...]

Proceedings ArticleDOI
14 Jun 2020
TL;DR: In this paper, the authors investigate a novel option to achieve this goal by enabling adaptive bit-widths of weights and activations in the model, and propose a new technique named Switchable Clipping Level (S-CL) to further improve quantized models at the lowest bitwidth.
Abstract: Deep neural networks with adaptive configurations have gained increasing attention due to the instant and flexible deployment of these models on platforms with different resource budgets. In this paper, we investigate a novel option to achieve this goal by enabling adaptive bit-widths of weights and activations in the model. We first examine the benefits and challenges of training quantized model with adaptive bit-widths, and then experiment with several approaches including direct adaptation, progressive training and joint training. We discover that joint training is able to produce comparable performance on the adaptive model as individual models. We also propose a new technique named Switchable Clipping Level (S-CL) to further improve quantized models at the lowest bit-width. With our proposed techniques applied on a bunch of models including MobileNet V1/V2 and ResNet50, we demonstrate that bit-width of weights and activations is a new option for adaptively executable deep neural networks, offering a distinct opportunity for improved accuracy-efficiency trade-off as well as instant adaptation according to the platform constraints in real-world applications.

46 citations

Posted Content
TL;DR: In this article, the posterior fading problem was identified in one-shot NAS and a posterior convergence method was proposed to guide the parameter posterior towards its true distribution, where a hard latency constraint was introduced during the search so that the desired latency can be achieved.
Abstract: There is a growing interest in automated neural architecture search (NAS). To improve the efficiency of NAS, previous approaches adopt weight sharing method to force all models share the same set of weights. However, it has been observed that a model performing better with shared weights does not necessarily perform better when trained alone. In this paper, we analyse existing weight sharing one-shot NAS approaches from a Bayesian point of view and identify the posterior fading problem, which compromises the effectiveness of shared weights. To alleviate this problem, we present a practical approach to guide the parameter posterior towards its true distribution. Moreover, a hard latency constraint is introduced during the search so that the desired latency can be achieved. The resulted method, namely Posterior Convergent NAS (PC-NAS), achieves state-of-the-art performance under standard GPU latency constraint on ImageNet. In our small search space, our model PC-NAS-S attains 76.8 % top-1 accuracy, 2.1% higher than MobileNetV2 (1.4x) with the same latency. When adopted to the large search space, PC-NAS-L achieves 78.1 % top-1 accuracy within 11ms. The discovered architecture also transfers well to other computer vision applications such as object detection and person re-identification.

46 citations

References
More filters
Proceedings ArticleDOI
27 Jun 2016
TL;DR: In this article, the authors proposed a residual learning framework to ease the training of networks that are substantially deeper than those used previously, which won the 1st place on the ILSVRC 2015 classification task.
Abstract: Deeper neural networks are more difficult to train. We present a residual learning framework to ease the training of networks that are substantially deeper than those used previously. We explicitly reformulate the layers as learning residual functions with reference to the layer inputs, instead of learning unreferenced functions. We provide comprehensive empirical evidence showing that these residual networks are easier to optimize, and can gain accuracy from considerably increased depth. On the ImageNet dataset we evaluate residual nets with a depth of up to 152 layers—8× deeper than VGG nets [40] but still having lower complexity. An ensemble of these residual nets achieves 3.57% error on the ImageNet test set. This result won the 1st place on the ILSVRC 2015 classification task. We also present analysis on CIFAR-10 with 100 and 1000 layers. The depth of representations is of central importance for many visual recognition tasks. Solely due to our extremely deep representations, we obtain a 28% relative improvement on the COCO object detection dataset. Deep residual nets are foundations of our submissions to ILSVRC & COCO 2015 competitions1, where we also won the 1st places on the tasks of ImageNet detection, ImageNet localization, COCO detection, and COCO segmentation.

123,388 citations

Proceedings Article
01 Jan 2015
TL;DR: This work introduces Adam, an algorithm for first-order gradient-based optimization of stochastic objective functions, based on adaptive estimates of lower-order moments, and provides a regret bound on the convergence rate that is comparable to the best known results under the online convex optimization framework.
Abstract: We introduce Adam, an algorithm for first-order gradient-based optimization of stochastic objective functions, based on adaptive estimates of lower-order moments. The method is straightforward to implement, is computationally efficient, has little memory requirements, is invariant to diagonal rescaling of the gradients, and is well suited for problems that are large in terms of data and/or parameters. The method is also appropriate for non-stationary objectives and problems with very noisy and/or sparse gradients. The hyper-parameters have intuitive interpretations and typically require little tuning. Some connections to related algorithms, on which Adam was inspired, are discussed. We also analyze the theoretical convergence properties of the algorithm and provide a regret bound on the convergence rate that is comparable to the best known results under the online convex optimization framework. Empirical results demonstrate that Adam works well in practice and compares favorably to other stochastic optimization methods. Finally, we discuss AdaMax, a variant of Adam based on the infinity norm.

111,197 citations

Proceedings Article
04 Sep 2014
TL;DR: This work investigates the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting using an architecture with very small convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers.
Abstract: In this work we investigate the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting. Our main contribution is a thorough evaluation of networks of increasing depth using an architecture with very small (3x3) convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers. These findings were the basis of our ImageNet Challenge 2014 submission, where our team secured the first and the second places in the localisation and classification tracks respectively. We also show that our representations generalise well to other datasets, where they achieve state-of-the-art results. We have made our two best-performing ConvNet models publicly available to facilitate further research on the use of deep visual representations in computer vision.

55,235 citations


"Neural Architecture Search with Rei..." refers methods in this paper

  • ...Along with this success is a paradigm shift from feature designing to architecture designing, i.e., from SIFT (Lowe, 1999), and HOG (Dalal & Triggs, 2005), to AlexNet (Krizhevsky et al., 2012), VGGNet (Simonyan & Zisserman, 2014), GoogleNet (Szegedy et al., 2015), and ResNet (He et al., 2016a)....

    [...]

Journal ArticleDOI
01 Jan 1998
TL;DR: In this article, a graph transformer network (GTN) is proposed for handwritten character recognition, which can be used to synthesize a complex decision surface that can classify high-dimensional patterns, such as handwritten characters.
Abstract: Multilayer neural networks trained with the back-propagation algorithm constitute the best example of a successful gradient based learning technique. Given an appropriate network architecture, gradient-based learning algorithms can be used to synthesize a complex decision surface that can classify high-dimensional patterns, such as handwritten characters, with minimal preprocessing. This paper reviews various methods applied to handwritten character recognition and compares them on a standard handwritten digit recognition task. Convolutional neural networks, which are specifically designed to deal with the variability of 2D shapes, are shown to outperform all other techniques. Real-life document recognition systems are composed of multiple modules including field extraction, segmentation recognition, and language modeling. A new learning paradigm, called graph transformer networks (GTN), allows such multimodule systems to be trained globally using gradient-based methods so as to minimize an overall performance measure. Two systems for online handwriting recognition are described. Experiments demonstrate the advantage of global training, and the flexibility of graph transformer networks. A graph transformer network for reading a bank cheque is also described. It uses convolutional neural network character recognizers combined with global training techniques to provide record accuracy on business and personal cheques. It is deployed commercially and reads several million cheques per day.

42,067 citations

Proceedings ArticleDOI
20 Jun 2005
TL;DR: It is shown experimentally that grids of histograms of oriented gradient (HOG) descriptors significantly outperform existing feature sets for human detection, and the influence of each stage of the computation on performance is studied.
Abstract: We study the question of feature sets for robust visual object recognition; adopting linear SVM based human detection as a test case. After reviewing existing edge and gradient based descriptors, we show experimentally that grids of histograms of oriented gradient (HOG) descriptors significantly outperform existing feature sets for human detection. We study the influence of each stage of the computation on performance, concluding that fine-scale gradients, fine orientation binning, relatively coarse spatial binning, and high-quality local contrast normalization in overlapping descriptor blocks are all important for good results. The new approach gives near-perfect separation on the original MIT pedestrian database, so we introduce a more challenging dataset containing over 1800 annotated human images with a large range of pose variations and backgrounds.

31,952 citations


"Neural Architecture Search with Rei..." refers methods in this paper

  • ...Along with this success is a paradigm shift from feature designing to architecture designing, i.e., from SIFT (Lowe, 1999), and HOG (Dalal & Triggs, 2005), to AlexNet (Krizhevsky et al., 2012), VGGNet (Simonyan & Zisserman, 2014), GoogleNet (Szegedy et al., 2015), and ResNet (He et al., 2016a)....

    [...]