scispace - formally typeset
Search or ask a question
Posted Content

Neural Architecture Search with Reinforcement Learning

Barret Zoph1, Quoc V. Le1
05 Nov 2016-arXiv: Learning-
TL;DR: This paper uses a recurrent network to generate the model descriptions of neural networks and trains this RNN with reinforcement learning to maximize the expected accuracy of the generated architectures on a validation set.
Abstract: Neural networks are powerful and flexible models that work well for many difficult learning tasks in image, speech and natural language understanding. Despite their success, neural networks are still hard to design. In this paper, we use a recurrent network to generate the model descriptions of neural networks and train this RNN with reinforcement learning to maximize the expected accuracy of the generated architectures on a validation set. On the CIFAR-10 dataset, our method, starting from scratch, can design a novel network architecture that rivals the best human-invented architecture in terms of test set accuracy. Our CIFAR-10 model achieves a test error rate of 3.65, which is 0.09 percent better and 1.05x faster than the previous state-of-the-art model that used a similar architectural scheme. On the Penn Treebank dataset, our model can compose a novel recurrent cell that outperforms the widely-used LSTM cell, and other state-of-the-art baselines. Our cell achieves a test set perplexity of 62.4 on the Penn Treebank, which is 3.6 perplexity better than the previous state-of-the-art model. The cell can also be transferred to the character language modeling task on PTB and achieves a state-of-the-art perplexity of 1.214.
Citations
More filters
Posted Content
TL;DR: Experimental results show that the zero-shot random tickets outperform or attain a similar performance compared to existing "initial tickets", and a new method called "hybrid tickets", which achieves further improvement, is proposed.
Abstract: Network pruning is a method for reducing test-time computational resource requirements with minimal performance degradation. Conventional wisdom of pruning algorithms suggests that: (1) Pruning methods exploit information from training data to find good subnetworks; (2) The architecture of the pruned network is crucial for good performance. In this paper, we conduct sanity checks for the above beliefs on several recent unstructured pruning methods and surprisingly find that: (1) A set of methods which aims to find good subnetworks of the randomly-initialized network (which we call "initial tickets"), hardly exploits any information from the training data; (2) For the pruned networks obtained by these methods, randomly changing the preserved weights in each layer, while keeping the total number of preserved weights unchanged per layer, does not affect the final performance. These findings inspire us to choose a series of simple \emph{data-independent} prune ratios for each layer, and randomly prune each layer accordingly to get a subnetwork (which we call "random tickets"). Experimental results show that our zero-shot random tickets outperform or attain a similar performance compared to existing "initial tickets". In addition, we identify one existing pruning method that passes our sanity checks. We hybridize the ratios in our random ticket with this method and propose a new method called "hybrid tickets", which achieves further improvement. (Our code is publicly available at this https URL)

42 citations


Additional excerpts

  • ...Though we only try pruning ratios in a few simple forms without much tuning, the success of random tickets further suggests that our layerwise ratios can serve as a compact search space for neural architecture search [47, 48, 36, 25, 4]....

    [...]

Journal ArticleDOI
TL;DR: This article provides an overview of efficient deep learning methods, systems, and applications by introducing popular model compression methods, including pruning, factorization, quantization, as well as compact model design.
Abstract: Deep neural networks (DNNs) have achieved unprecedented success in the field of artificial intelligence (AI), including computer vision, natural language processing, and speech recognition. However, their superior performance comes at the considerable cost of computational complexity, which greatly hinders their applications in many resource-constrained devices, such as mobile phones and Internet of Things (IoT) devices. Therefore, methods and techniques that are able to lift the efficiency bottleneck while preserving the high accuracy of DNNs are in great demand to enable numerous edge AI applications. This article provides an overview of efficient deep learning methods, systems, and applications. We start from introducing popular model compression methods, including pruning, factorization, quantization, as well as compact model design. To reduce the large design cost of these manual solutions, we discuss the AutoML framework for each of them, such as neural architecture search (NAS) and automated pruning and quantization. We then cover efficient on-device training to enable user customization based on the local data on mobile devices. Apart from general acceleration techniques, we also showcase several task-specific accelerations for point cloud, video, and natural language processing by exploiting their spatial sparsity and temporal/token redundancy. Finally, to support all these algorithmic advancements, we introduce the efficient deep learning system design from both software and hardware perspectives.

42 citations

Posted Content
TL;DR: Recurrent additive networks are introduced, a new gated RNN which is distinguished by the use of purely additive latent state updates, and it is formally shown that RAN states are weighted sums of the input vectors, and that the gates only contribute to computing the weights of these sums.
Abstract: We introduce recurrent additive networks (RANs), a new gated RNN which is distinguished by the use of purely additive latent state updates. At every time step, the new state is computed as a gated component-wise sum of the input and the previous state, without any of the non-linearities commonly used in RNN transition dynamics. We formally show that RAN states are weighted sums of the input vectors, and that the gates only contribute to computing the weights of these sums. Despite this relatively simple functional form, experiments demonstrate that RANs perform on par with LSTMs on benchmark language modeling problems. This result shows that many of the non-linear computations in LSTMs and related networks are not essential, at least for the problems we consider, and suggests that the gates are doing more of the computational work than previously understood.

42 citations


Cites background or methods from "Neural Architecture Search with Rei..."

  • ...Greff et al. (2016) conducted an LSTM ablation study that probed the importance of each component independently, while others (Józefowicz et al., 2015; Zoph and Le, 2017) took an automatic approach to the task of architecture design, finding additional variants of GRNNs....

    [...]

  • ...(2016) conducted an LSTM ablation study that probed the importance of each component independently, while others (Józefowicz et al., 2015; Zoph and Le, 2017) took an automatic approach to the task of architecture design, finding additional variants of GRNNs....

    [...]

Book ChapterDOI
25 Mar 2020
TL;DR: It is revealed that AutoAugment may remove part of discriminative information from the training image and so insisting on the ground-truth label is no longer the best option, and knowledge distillation is made use that refers to the output of a teacher model to guide network training.
Abstract: AutoAugment has been a powerful algorithm that improves the accuracy of many vision tasks, yet it is sensitive to the operator space as well as hyper-parameters, and an improper setting may degenerate network optimization. This paper delves deep into the working mechanism, and reveals that AutoAugment may remove part of discriminative information from the training image and so insisting on the ground-truth label is no longer the best option. To relieve the inaccuracy of supervision, we make use of knowledge distillation that refers to the output of a teacher model to guide network training. Experiments are performed in standard image classification benchmarks, and demonstrate the effectiveness of our approach in suppressing noise of data augmentation and stabilizing training. Upon the cooperation of knowledge distillation and AutoAugment, we claim the new state-of-the-art on ImageNet classification with a top-1 accuracy of \(\mathbf {85.8\%}\).

42 citations


Cites background from "Neural Architecture Search with Rei..."

  • ...Modern neural networks, either manuallydesigned [22,34,38,14,19] or automatically searched [58,31,59,27,40,41], often contain a very large number of trainable parameters and thus raise the challenge of collecting more labeled data to avoid over-fitting....

    [...]

Proceedings ArticleDOI
Yufan He1, Dong Yang2, Holger R. Roth2, Can Zhao2, Daguang Xu2 
20 Jun 2021
TL;DR: Differentiable Network Topology Search (DiNTS) as discussed by the authors proposes a differentiable search framework to support fast gradient-based search within a highly flexible network topology search space.
Abstract: Recently, neural architecture search (NAS) has been applied to automatically search high-performance networks for medical image segmentation. The NAS search space usually contains a network topology level (controlling connections among cells with different spatial scales) and a cell level (operations within each cell). Existing methods either require long searching time for large-scale 3D image datasets, or are limited to pre-defined topologies (such as U-shaped or single-path) . In this work, we focus on three important aspects of NAS in 3D medical image segmentation: flexible multi-path network topology, high search efficiency, and budgeted GPU memory usage. A novel differentiable search framework is proposed to support fast gradient-based search within a highly flexible network topology search space. The discretization of the searched optimal continuous model in differentiable scheme may produce a sub-optimal final discrete model (discretization gap). Therefore, we propose a topology loss to alleviate this problem. In addition, the GPU memory usage for the searched 3D model is limited with budget constraints during search. Our Differentiable Network Topology Search scheme (DiNTS) is evaluated on the Medical Segmentation Decathlon (MSD) challenge, which contains ten challenging segmentation tasks. Our method achieves the state-of-the-art performance and the top ranking on the MSD challenge leaderboard.

42 citations

References
More filters
Proceedings ArticleDOI
27 Jun 2016
TL;DR: In this article, the authors proposed a residual learning framework to ease the training of networks that are substantially deeper than those used previously, which won the 1st place on the ILSVRC 2015 classification task.
Abstract: Deeper neural networks are more difficult to train. We present a residual learning framework to ease the training of networks that are substantially deeper than those used previously. We explicitly reformulate the layers as learning residual functions with reference to the layer inputs, instead of learning unreferenced functions. We provide comprehensive empirical evidence showing that these residual networks are easier to optimize, and can gain accuracy from considerably increased depth. On the ImageNet dataset we evaluate residual nets with a depth of up to 152 layers—8× deeper than VGG nets [40] but still having lower complexity. An ensemble of these residual nets achieves 3.57% error on the ImageNet test set. This result won the 1st place on the ILSVRC 2015 classification task. We also present analysis on CIFAR-10 with 100 and 1000 layers. The depth of representations is of central importance for many visual recognition tasks. Solely due to our extremely deep representations, we obtain a 28% relative improvement on the COCO object detection dataset. Deep residual nets are foundations of our submissions to ILSVRC & COCO 2015 competitions1, where we also won the 1st places on the tasks of ImageNet detection, ImageNet localization, COCO detection, and COCO segmentation.

123,388 citations

Proceedings Article
01 Jan 2015
TL;DR: This work introduces Adam, an algorithm for first-order gradient-based optimization of stochastic objective functions, based on adaptive estimates of lower-order moments, and provides a regret bound on the convergence rate that is comparable to the best known results under the online convex optimization framework.
Abstract: We introduce Adam, an algorithm for first-order gradient-based optimization of stochastic objective functions, based on adaptive estimates of lower-order moments. The method is straightforward to implement, is computationally efficient, has little memory requirements, is invariant to diagonal rescaling of the gradients, and is well suited for problems that are large in terms of data and/or parameters. The method is also appropriate for non-stationary objectives and problems with very noisy and/or sparse gradients. The hyper-parameters have intuitive interpretations and typically require little tuning. Some connections to related algorithms, on which Adam was inspired, are discussed. We also analyze the theoretical convergence properties of the algorithm and provide a regret bound on the convergence rate that is comparable to the best known results under the online convex optimization framework. Empirical results demonstrate that Adam works well in practice and compares favorably to other stochastic optimization methods. Finally, we discuss AdaMax, a variant of Adam based on the infinity norm.

111,197 citations

Proceedings Article
04 Sep 2014
TL;DR: This work investigates the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting using an architecture with very small convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers.
Abstract: In this work we investigate the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting. Our main contribution is a thorough evaluation of networks of increasing depth using an architecture with very small (3x3) convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers. These findings were the basis of our ImageNet Challenge 2014 submission, where our team secured the first and the second places in the localisation and classification tracks respectively. We also show that our representations generalise well to other datasets, where they achieve state-of-the-art results. We have made our two best-performing ConvNet models publicly available to facilitate further research on the use of deep visual representations in computer vision.

55,235 citations


"Neural Architecture Search with Rei..." refers methods in this paper

  • ...Along with this success is a paradigm shift from feature designing to architecture designing, i.e., from SIFT (Lowe, 1999), and HOG (Dalal & Triggs, 2005), to AlexNet (Krizhevsky et al., 2012), VGGNet (Simonyan & Zisserman, 2014), GoogleNet (Szegedy et al., 2015), and ResNet (He et al., 2016a)....

    [...]

Journal ArticleDOI
01 Jan 1998
TL;DR: In this article, a graph transformer network (GTN) is proposed for handwritten character recognition, which can be used to synthesize a complex decision surface that can classify high-dimensional patterns, such as handwritten characters.
Abstract: Multilayer neural networks trained with the back-propagation algorithm constitute the best example of a successful gradient based learning technique. Given an appropriate network architecture, gradient-based learning algorithms can be used to synthesize a complex decision surface that can classify high-dimensional patterns, such as handwritten characters, with minimal preprocessing. This paper reviews various methods applied to handwritten character recognition and compares them on a standard handwritten digit recognition task. Convolutional neural networks, which are specifically designed to deal with the variability of 2D shapes, are shown to outperform all other techniques. Real-life document recognition systems are composed of multiple modules including field extraction, segmentation recognition, and language modeling. A new learning paradigm, called graph transformer networks (GTN), allows such multimodule systems to be trained globally using gradient-based methods so as to minimize an overall performance measure. Two systems for online handwriting recognition are described. Experiments demonstrate the advantage of global training, and the flexibility of graph transformer networks. A graph transformer network for reading a bank cheque is also described. It uses convolutional neural network character recognizers combined with global training techniques to provide record accuracy on business and personal cheques. It is deployed commercially and reads several million cheques per day.

42,067 citations

Proceedings ArticleDOI
20 Jun 2005
TL;DR: It is shown experimentally that grids of histograms of oriented gradient (HOG) descriptors significantly outperform existing feature sets for human detection, and the influence of each stage of the computation on performance is studied.
Abstract: We study the question of feature sets for robust visual object recognition; adopting linear SVM based human detection as a test case. After reviewing existing edge and gradient based descriptors, we show experimentally that grids of histograms of oriented gradient (HOG) descriptors significantly outperform existing feature sets for human detection. We study the influence of each stage of the computation on performance, concluding that fine-scale gradients, fine orientation binning, relatively coarse spatial binning, and high-quality local contrast normalization in overlapping descriptor blocks are all important for good results. The new approach gives near-perfect separation on the original MIT pedestrian database, so we introduce a more challenging dataset containing over 1800 annotated human images with a large range of pose variations and backgrounds.

31,952 citations


"Neural Architecture Search with Rei..." refers methods in this paper

  • ...Along with this success is a paradigm shift from feature designing to architecture designing, i.e., from SIFT (Lowe, 1999), and HOG (Dalal & Triggs, 2005), to AlexNet (Krizhevsky et al., 2012), VGGNet (Simonyan & Zisserman, 2014), GoogleNet (Szegedy et al., 2015), and ResNet (He et al., 2016a)....

    [...]