scispace - formally typeset
Search or ask a question
Posted Content

Neural Architecture Search with Reinforcement Learning

Barret Zoph1, Quoc V. Le1
05 Nov 2016-arXiv: Learning-
TL;DR: This paper uses a recurrent network to generate the model descriptions of neural networks and trains this RNN with reinforcement learning to maximize the expected accuracy of the generated architectures on a validation set.
Abstract: Neural networks are powerful and flexible models that work well for many difficult learning tasks in image, speech and natural language understanding. Despite their success, neural networks are still hard to design. In this paper, we use a recurrent network to generate the model descriptions of neural networks and train this RNN with reinforcement learning to maximize the expected accuracy of the generated architectures on a validation set. On the CIFAR-10 dataset, our method, starting from scratch, can design a novel network architecture that rivals the best human-invented architecture in terms of test set accuracy. Our CIFAR-10 model achieves a test error rate of 3.65, which is 0.09 percent better and 1.05x faster than the previous state-of-the-art model that used a similar architectural scheme. On the Penn Treebank dataset, our model can compose a novel recurrent cell that outperforms the widely-used LSTM cell, and other state-of-the-art baselines. Our cell achieves a test set perplexity of 62.4 on the Penn Treebank, which is 3.6 perplexity better than the previous state-of-the-art model. The cell can also be transferred to the character language modeling task on PTB and achieves a state-of-the-art perplexity of 1.214.
Citations
More filters
Posted Content
TL;DR: GreedyNAS as mentioned in this paper proposes a multi-path sampling strategy with rejection, and greedily filter the weak paths to improve the performance of a single supernet on a huge-scale search space.
Abstract: Training a supernet matters for one-shot neural architecture search (NAS) methods since it serves as a basic performance estimator for different architectures (paths). Current methods mainly hold the assumption that a supernet should give a reasonable ranking over all paths. They thus treat all paths equally, and spare much effort to train paths. However, it is harsh for a single supernet to evaluate accurately on such a huge-scale search space (e.g., $7^{21}$). In this paper, instead of covering all paths, we ease the burden of supernet by encouraging it to focus more on evaluation of those potentially-good ones, which are identified using a surrogate portion of validation data. Concretely, during training, we propose a multi-path sampling strategy with rejection, and greedily filter the weak paths. The training efficiency is thus boosted since the training space has been greedily shrunk from all paths to those potentially-good ones. Moreover, we further adopt an exploration and exploitation policy by introducing an empirical candidate path pool. Our proposed method GreedyNAS is easy-to-follow, and experimental results on ImageNet dataset indicate that it can achieve better Top-1 accuracy under same search space and FLOPs or latency level, but with only $\sim$60\% of supernet training cost. By searching on a larger space, our GreedyNAS can also obtain new state-of-the-art architectures.

34 citations

Journal ArticleDOI
In Ki Kim1, Kook Lee1, Jae Hyun Park1, Jiwon Baek1, Won-Ki Lee 
TL;DR: This study investigated the feasibility of classifying pachychoroid disease on ultra-widefield indocyanine green angiography (UWF ICGA) images using an automated machine-learning platform and found it can be used after careful consideration for pachyChoroid definition and limitation of the platform including unstable performance on the medical image.
Abstract: Aims Automatic identification of pachychoroid maybe used as an adjunctive method to confirm the condition and be of help in treatment for macular diseases This study investigated the feasibility of classifying pachychoroid disease on ultra-widefield indocyanine green angiography (UWF ICGA) images using an automated machine-learning platform Methods Two models were trained with a set including 783 UWF ICGA images of patients with pachychoroid (n=376) and non-pachychoroid (n=349) diseases using the AutoML Vision (Google) Pachychoroid was confirmed using quantitative and qualitative choroidal morphology on multimodal imaging by two retina specialists Model 1 used the original and Model 2 used images of the left eye horizontally flipped to the orientation of the right eye to increase accuracy by equalising the mirror image of the right eye and left eye The performances were compared with those of human experts Results In total, 284, 279 and 220 images of central serous chorioretinopathy, polypoidal choroidal vasculopathy and neovascular age-related maculopathy were included The precision and recall were 8784% and 8784% for Model 1 and 8919% and 8919% for Model 2, which were comparable to the results of the retinal specialists (9091% and 9524%) and superior to those of ophthalmic residents (6818% and 9250%) Conclusions Auto machine-learning platform can be used in the classification of pachychoroid on UWF ICGA images after careful consideration for pachychoroid definition and limitation of the platform including unstable performance on the medical image

34 citations

Proceedings ArticleDOI
14 Jun 2020
TL;DR: In this paper, a semi-supervised assessor of neural architectures is proposed to predict the performance of architectures based on the learned representations and their relation modeled by the graph, where both labeled and unlabeled architectures are involved.
Abstract: Neural architecture search (NAS) aims to automatically design deep neural networks of satisfactory performance. Wherein, architecture performance predictor is critical to efficiently value an intermediate neural architecture. But for the training of this predictor, a number of neural architectures and their corresponding real performance often have to be collected. In contrast with classical performance predictor optimized in a fully supervised way, this paper suggests a semi-supervised assessor of neural architectures. We employ an auto-encoder to discover meaningful representations of neural architectures. Taking each neural architecture as an individual instance in the search space, we construct a graph to capture their intrinsic similarities, where both labeled and unlabeled architectures are involved. A graph convolutional neural network is introduced to predict the performance of architectures based on the learned representations and their relation modeled by the graph. Extensive experimental results on the NAS-Benchmark-101 dataset demonstrated that our method is able to make a significant reduction on the required fully trained architectures for finding efficient architectures.

34 citations

Posted Content
TL;DR: This work shows that the common gradient-based white-box attacks can be generalized to the black-box setting via the connection between the gradient and an importance score similar to PageRank, and proposes a greedy procedure to correct the importance score that takes into account of the diminishing-return pattern.
Abstract: We study the black-box attacks on graph neural networks (GNNs) under a novel and realistic constraint: attackers have access to only a subset of nodes in the network, and they can only attack a small number of them. A node selection step is essential under this setup. We demonstrate that the structural inductive biases of GNN models can be an effective source for this type of attacks. Specifically, by exploiting the connection between the backward propagation of GNNs and random walks, we show that the common gradient-based white-box attacks can be generalized to the black-box setting via the connection between the gradient and an importance score similar to PageRank. In practice, we find attacks based on this importance score indeed increase the classification loss by a large margin, but they fail to significantly increase the mis-classification rate. Our theoretical and empirical analyses suggest that there is a discrepancy between the loss and mis-classification rate, as the latter presents a diminishing-return pattern when the number of attacked nodes increases. Therefore, we propose a greedy procedure to correct the importance score that takes into account of the diminishing-return pattern. Experimental results show that the proposed procedure can significantly increase the mis-classification rate of common GNNs on real-world data without access to model parameters nor predictions.

34 citations


Cites background from "Neural Architecture Search with Rei..."

  • ...Such neural architectures have been recognized as a key factor for the success of deep learning models [28], which (partially) motivate some recent developments of neural architecture search [28], Bayesian deep learning [20], Lottery Ticket Hypothesis [7], etc....

    [...]

Journal ArticleDOI
21 Jan 2021
TL;DR: In this article, the authors proposed a deep learning design for location and person-independent activity recognition with WiFi, which consists of three deep neural networks (DNNs): a 2D Convolutional Neural Network (CNN) as the recognition algorithm, a 1D CNN as the state machine, and a reinforcement learning agent for neural architecture search.
Abstract: In recent years, Channel State Information (CSI) measured by WiFi is widely used for human activity recognition In this article, we propose a deep learning design for location- and person-independent activity recognition with WiFi The proposed design consists of three Deep Neural Networks (DNNs): a 2D Convolutional Neural Network (CNN) as the recognition algorithm, a 1D CNN as the state machine, and a reinforcement learning agent for neural architecture search The recognition algorithm learns location- and person-independent features from different perspectives of CSI data The state machine learns temporal dependency information from history classification results The reinforcement learning agent optimizes the neural architecture of the recognition algorithm using a Recurrent Neural Network (RNN) with Long Short-Term Memory (LSTM) The proposed design is evaluated in a lab environment with different WiFi device locations, antenna orientations, sitting/standing/walking locations/orientations, and multiple persons The proposed design has 97% average accuracy when testing devices and persons are not seen during training The proposed design is also evaluated by two public datasets with accuracy of 80% and 83% The proposed design needs very little human efforts for ground truth labeling, feature engineering, signal processing, and tuning of learning parameters and hyperparameters

34 citations

References
More filters
Proceedings ArticleDOI
27 Jun 2016
TL;DR: In this article, the authors proposed a residual learning framework to ease the training of networks that are substantially deeper than those used previously, which won the 1st place on the ILSVRC 2015 classification task.
Abstract: Deeper neural networks are more difficult to train. We present a residual learning framework to ease the training of networks that are substantially deeper than those used previously. We explicitly reformulate the layers as learning residual functions with reference to the layer inputs, instead of learning unreferenced functions. We provide comprehensive empirical evidence showing that these residual networks are easier to optimize, and can gain accuracy from considerably increased depth. On the ImageNet dataset we evaluate residual nets with a depth of up to 152 layers—8× deeper than VGG nets [40] but still having lower complexity. An ensemble of these residual nets achieves 3.57% error on the ImageNet test set. This result won the 1st place on the ILSVRC 2015 classification task. We also present analysis on CIFAR-10 with 100 and 1000 layers. The depth of representations is of central importance for many visual recognition tasks. Solely due to our extremely deep representations, we obtain a 28% relative improvement on the COCO object detection dataset. Deep residual nets are foundations of our submissions to ILSVRC & COCO 2015 competitions1, where we also won the 1st places on the tasks of ImageNet detection, ImageNet localization, COCO detection, and COCO segmentation.

123,388 citations

Proceedings Article
01 Jan 2015
TL;DR: This work introduces Adam, an algorithm for first-order gradient-based optimization of stochastic objective functions, based on adaptive estimates of lower-order moments, and provides a regret bound on the convergence rate that is comparable to the best known results under the online convex optimization framework.
Abstract: We introduce Adam, an algorithm for first-order gradient-based optimization of stochastic objective functions, based on adaptive estimates of lower-order moments. The method is straightforward to implement, is computationally efficient, has little memory requirements, is invariant to diagonal rescaling of the gradients, and is well suited for problems that are large in terms of data and/or parameters. The method is also appropriate for non-stationary objectives and problems with very noisy and/or sparse gradients. The hyper-parameters have intuitive interpretations and typically require little tuning. Some connections to related algorithms, on which Adam was inspired, are discussed. We also analyze the theoretical convergence properties of the algorithm and provide a regret bound on the convergence rate that is comparable to the best known results under the online convex optimization framework. Empirical results demonstrate that Adam works well in practice and compares favorably to other stochastic optimization methods. Finally, we discuss AdaMax, a variant of Adam based on the infinity norm.

111,197 citations

Proceedings Article
04 Sep 2014
TL;DR: This work investigates the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting using an architecture with very small convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers.
Abstract: In this work we investigate the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting. Our main contribution is a thorough evaluation of networks of increasing depth using an architecture with very small (3x3) convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers. These findings were the basis of our ImageNet Challenge 2014 submission, where our team secured the first and the second places in the localisation and classification tracks respectively. We also show that our representations generalise well to other datasets, where they achieve state-of-the-art results. We have made our two best-performing ConvNet models publicly available to facilitate further research on the use of deep visual representations in computer vision.

55,235 citations


"Neural Architecture Search with Rei..." refers methods in this paper

  • ...Along with this success is a paradigm shift from feature designing to architecture designing, i.e., from SIFT (Lowe, 1999), and HOG (Dalal & Triggs, 2005), to AlexNet (Krizhevsky et al., 2012), VGGNet (Simonyan & Zisserman, 2014), GoogleNet (Szegedy et al., 2015), and ResNet (He et al., 2016a)....

    [...]

Journal ArticleDOI
01 Jan 1998
TL;DR: In this article, a graph transformer network (GTN) is proposed for handwritten character recognition, which can be used to synthesize a complex decision surface that can classify high-dimensional patterns, such as handwritten characters.
Abstract: Multilayer neural networks trained with the back-propagation algorithm constitute the best example of a successful gradient based learning technique. Given an appropriate network architecture, gradient-based learning algorithms can be used to synthesize a complex decision surface that can classify high-dimensional patterns, such as handwritten characters, with minimal preprocessing. This paper reviews various methods applied to handwritten character recognition and compares them on a standard handwritten digit recognition task. Convolutional neural networks, which are specifically designed to deal with the variability of 2D shapes, are shown to outperform all other techniques. Real-life document recognition systems are composed of multiple modules including field extraction, segmentation recognition, and language modeling. A new learning paradigm, called graph transformer networks (GTN), allows such multimodule systems to be trained globally using gradient-based methods so as to minimize an overall performance measure. Two systems for online handwriting recognition are described. Experiments demonstrate the advantage of global training, and the flexibility of graph transformer networks. A graph transformer network for reading a bank cheque is also described. It uses convolutional neural network character recognizers combined with global training techniques to provide record accuracy on business and personal cheques. It is deployed commercially and reads several million cheques per day.

42,067 citations

Proceedings ArticleDOI
20 Jun 2005
TL;DR: It is shown experimentally that grids of histograms of oriented gradient (HOG) descriptors significantly outperform existing feature sets for human detection, and the influence of each stage of the computation on performance is studied.
Abstract: We study the question of feature sets for robust visual object recognition; adopting linear SVM based human detection as a test case. After reviewing existing edge and gradient based descriptors, we show experimentally that grids of histograms of oriented gradient (HOG) descriptors significantly outperform existing feature sets for human detection. We study the influence of each stage of the computation on performance, concluding that fine-scale gradients, fine orientation binning, relatively coarse spatial binning, and high-quality local contrast normalization in overlapping descriptor blocks are all important for good results. The new approach gives near-perfect separation on the original MIT pedestrian database, so we introduce a more challenging dataset containing over 1800 annotated human images with a large range of pose variations and backgrounds.

31,952 citations


"Neural Architecture Search with Rei..." refers methods in this paper

  • ...Along with this success is a paradigm shift from feature designing to architecture designing, i.e., from SIFT (Lowe, 1999), and HOG (Dalal & Triggs, 2005), to AlexNet (Krizhevsky et al., 2012), VGGNet (Simonyan & Zisserman, 2014), GoogleNet (Szegedy et al., 2015), and ResNet (He et al., 2016a)....

    [...]