scispace - formally typeset
Search or ask a question
Posted Content

Neural Architecture Search with Reinforcement Learning

Barret Zoph1, Quoc V. Le1
05 Nov 2016-arXiv: Learning-
TL;DR: This paper uses a recurrent network to generate the model descriptions of neural networks and trains this RNN with reinforcement learning to maximize the expected accuracy of the generated architectures on a validation set.
Abstract: Neural networks are powerful and flexible models that work well for many difficult learning tasks in image, speech and natural language understanding. Despite their success, neural networks are still hard to design. In this paper, we use a recurrent network to generate the model descriptions of neural networks and train this RNN with reinforcement learning to maximize the expected accuracy of the generated architectures on a validation set. On the CIFAR-10 dataset, our method, starting from scratch, can design a novel network architecture that rivals the best human-invented architecture in terms of test set accuracy. Our CIFAR-10 model achieves a test error rate of 3.65, which is 0.09 percent better and 1.05x faster than the previous state-of-the-art model that used a similar architectural scheme. On the Penn Treebank dataset, our model can compose a novel recurrent cell that outperforms the widely-used LSTM cell, and other state-of-the-art baselines. Our cell achieves a test set perplexity of 62.4 on the Penn Treebank, which is 3.6 perplexity better than the previous state-of-the-art model. The cell can also be transferred to the character language modeling task on PTB and achieves a state-of-the-art perplexity of 1.214.
Citations
More filters
Posted Content
TL;DR: It is demonstrated that it is possible to automatically design CNNs which generalize well, while also being small enough to fit onto memory-limited MCUs, and the CNNs found are more accurate and up to $4.35 times smaller than previous approaches, while meeting the strict MCU working memory constraint.
Abstract: The vast majority of processors in the world are actually microcontroller units (MCUs), which find widespread use performing simple control tasks in applications ranging from automobiles to medical devices and office equipment. The Internet of Things (IoT) promises to inject machine learning into many of these every-day objects via tiny, cheap MCUs. However, these resource-impoverished hardware platforms severely limit the complexity of machine learning models that can be deployed. For example, although convolutional neural networks (CNNs) achieve state-of-the-art results on many visual recognition tasks, CNN inference on MCUs is challenging due to severe finite memory limitations. To circumvent the memory challenge associated with CNNs, various alternatives have been proposed that do fit within the memory budget of an MCU, albeit at the cost of prediction accuracy. This paper challenges the idea that CNNs are not suitable for deployment on MCUs. We demonstrate that it is possible to automatically design CNNs which generalize well, while also being small enough to fit onto memory-limited MCUs. Our Sparse Architecture Search method combines neural architecture search with pruning in a single, unified approach, which learns superior models on four popular IoT datasets. The CNNs we find are more accurate and up to $4.35\times$ smaller than previous approaches, while meeting the strict MCU working memory constraint.

31 citations


Cites background from "Neural Architecture Search with Rei..."

  • ...Algorithms for identifying performant CNN architectures have received significant attention recently [66, 23, 20, 45, 31, 24, 44]....

    [...]

  • ...5 Network morphism Evaluating each configuration Ω from a random initialization is slow, as evidenced by early NAS works which required thousands of GPU days [66, 67]....

    [...]

Journal ArticleDOI
TL;DR: A theoretical framework is proposed that sheds light on understanding deep networks within a bigger picture of intelligence in general and introduces two fundamental principles, Parsimony and Self-consistency, which address two fundamental questions regarding intelligence: what to learn and how to learn, respectively.
Abstract: Ten years into the revival of deep networks and artificial intelligence, we propose a theoretical framework that sheds light on understanding deep networks within a bigger picture of intelligence in general. We introduce two fundamental principles, Parsimony and Self-consistency, which address two fundamental questions regarding intelligence: what to learn and how to learn, respectively. We believe the two principles serve as the cornerstone for the emergence of intelligence, artificial or natural. While they have rich classical roots, we argue that they can be stated anew in entirely measurable and computable ways. More specifically, the two principles lead to an effective and efficient computational framework, compressive closed-loop transcription, which unifies and explains the evolution of modern deep networks and most practices of artificial intelligence. While we use mainly visual data modeling as an example, we believe the two principles will unify understanding of broad families of autonomous intelligent systems and provide a framework for understanding the brain.

31 citations

Posted Content
TL;DR: This work conducts an in-depth survey of recent literature, examining over 70 publications related to chatbots published in the last 3 years and makes the argument that the very nature of the general conversation domain demands approaches that are different from current state-of-the-art architectures.
Abstract: A conversational agent (chatbot) is a piece of software that is able to communicate with humans using natural language. Modeling conversation is an important task in natural language processing and artificial intelligence. While chatbots can be used for various tasks, in general they have to understand users' utterances and provide responses that are relevant to the problem at hand. In my work, I conduct an in-depth survey of recent literature, examining over 70 publications related to chatbots published in the last 3 years. Then, I proceed to make the argument that the very nature of the general conversation domain demands approaches that are different from current state-of-of-the-art architectures. Based on several examples from the literature I show why current chatbot models fail to take into account enough priors when generating responses and how this affects the quality of the conversation. In the case of chatbots, these priors can be outside sources of information that the conversation is conditioned on like the persona or mood of the conversers. In addition to presenting the reasons behind this problem, I propose several ideas on how it could be remedied. The next section focuses on adapting the very recent Transformer model to the chatbot domain, which is currently state-of-the-art in neural machine translation. I first present experiments with the vanilla model, using conversations extracted from the Cornell Movie-Dialog Corpus. Secondly, I augment the model with some of my ideas regarding the issues of encoder-decoder architectures. More specifically, I feed additional features into the model like mood or persona together with the raw conversation data. Finally, I conduct a detailed analysis of how the vanilla model performs on conversational data by comparing it to previous chatbot models and how the additional features affect the quality of the generated responses.

31 citations

Journal ArticleDOI
TL;DR: Compared with existing hand-crafted and auto-generated neural networks, the proposed reinforcement learning algorithm for deep networks design only runs on one GPU, demonstrating much higher efficiency than most of the previous deep network search approaches.
Abstract: In recent years, deep neural networks (DNNs) have achieved great successes in many areas, such as cognitive computation, pattern recognition, and computer vision. Although many hand-crafted deep networks have been proposed in the literature, designing a well-behaved neural network for a specific application requires high-level expertise yet. Hence, the automatic architecture design of DNNs has become a challenging and important problem. In this paper, we propose a new reinforcement learning method, whose action policy is to select neural blocks and construct deep networks. We define the action search space with three types of neural blocks, i.e., dense block, residual block, and inception-like block. Additionally, we have also designed several variants for the residual and inception-like blocks. The optimal network is automatically learned by a Q-learning agent, which is iteratively trained to generate well-performed deep networks. To evaluate the proposed method, we have conducted experiments on three datasets, MNIST, SVHN, and CIFAR-10, for image classification applications. Compared with existing hand-crafted and auto-generated neural networks, our auto-designed neural network delivers promising results. Moreover, the proposed reinforcement learning algorithm for deep networks design only runs on one GPU, demonstrating much higher efficiency than most of the previous deep network search approaches.

30 citations

Posted Content
TL;DR: Efficient progressive neural architecture search (EPNAS) as discussed by the authors proposes to attenuate the greediness of the original SMBO method by relaxing the role of the surrogate function so it predicts architecture sampling probability instead.
Abstract: This paper addresses the difficult problem of finding an optimal neural architecture design for a given image classification task. We propose a method that aggregates two main results of the previous state-of-the-art in neural architecture search. These are, appealing to the strong sampling efficiency of a search scheme based on sequential model-based optimization (SMBO), and increasing training efficiency by sharing weights among sampled architectures. Sequential search has previously demonstrated its capabilities to find state-of-the-art neural architectures for image classification. However, its computational cost remains high, even unreachable under modest computational settings. Affording SMBO with weight-sharing alleviates this problem. On the other hand, progressive search with SMBO is inherently greedy, as it leverages a learned surrogate function to predict the validation error of neural architectures. This prediction is directly used to rank the sampled neural architectures. We propose to attenuate the greediness of the original SMBO method by relaxing the role of the surrogate function so it predicts architecture sampling probability instead. We demonstrate with experiments on the CIFAR-10 dataset that our method, denominated Efficient progressive neural architecture search (EPNAS), leads to increased search efficiency, while retaining competitiveness of found architectures.

30 citations

References
More filters
Proceedings ArticleDOI
27 Jun 2016
TL;DR: In this article, the authors proposed a residual learning framework to ease the training of networks that are substantially deeper than those used previously, which won the 1st place on the ILSVRC 2015 classification task.
Abstract: Deeper neural networks are more difficult to train. We present a residual learning framework to ease the training of networks that are substantially deeper than those used previously. We explicitly reformulate the layers as learning residual functions with reference to the layer inputs, instead of learning unreferenced functions. We provide comprehensive empirical evidence showing that these residual networks are easier to optimize, and can gain accuracy from considerably increased depth. On the ImageNet dataset we evaluate residual nets with a depth of up to 152 layers—8× deeper than VGG nets [40] but still having lower complexity. An ensemble of these residual nets achieves 3.57% error on the ImageNet test set. This result won the 1st place on the ILSVRC 2015 classification task. We also present analysis on CIFAR-10 with 100 and 1000 layers. The depth of representations is of central importance for many visual recognition tasks. Solely due to our extremely deep representations, we obtain a 28% relative improvement on the COCO object detection dataset. Deep residual nets are foundations of our submissions to ILSVRC & COCO 2015 competitions1, where we also won the 1st places on the tasks of ImageNet detection, ImageNet localization, COCO detection, and COCO segmentation.

123,388 citations

Proceedings Article
01 Jan 2015
TL;DR: This work introduces Adam, an algorithm for first-order gradient-based optimization of stochastic objective functions, based on adaptive estimates of lower-order moments, and provides a regret bound on the convergence rate that is comparable to the best known results under the online convex optimization framework.
Abstract: We introduce Adam, an algorithm for first-order gradient-based optimization of stochastic objective functions, based on adaptive estimates of lower-order moments. The method is straightforward to implement, is computationally efficient, has little memory requirements, is invariant to diagonal rescaling of the gradients, and is well suited for problems that are large in terms of data and/or parameters. The method is also appropriate for non-stationary objectives and problems with very noisy and/or sparse gradients. The hyper-parameters have intuitive interpretations and typically require little tuning. Some connections to related algorithms, on which Adam was inspired, are discussed. We also analyze the theoretical convergence properties of the algorithm and provide a regret bound on the convergence rate that is comparable to the best known results under the online convex optimization framework. Empirical results demonstrate that Adam works well in practice and compares favorably to other stochastic optimization methods. Finally, we discuss AdaMax, a variant of Adam based on the infinity norm.

111,197 citations

Proceedings Article
04 Sep 2014
TL;DR: This work investigates the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting using an architecture with very small convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers.
Abstract: In this work we investigate the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting. Our main contribution is a thorough evaluation of networks of increasing depth using an architecture with very small (3x3) convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers. These findings were the basis of our ImageNet Challenge 2014 submission, where our team secured the first and the second places in the localisation and classification tracks respectively. We also show that our representations generalise well to other datasets, where they achieve state-of-the-art results. We have made our two best-performing ConvNet models publicly available to facilitate further research on the use of deep visual representations in computer vision.

55,235 citations


"Neural Architecture Search with Rei..." refers methods in this paper

  • ...Along with this success is a paradigm shift from feature designing to architecture designing, i.e., from SIFT (Lowe, 1999), and HOG (Dalal & Triggs, 2005), to AlexNet (Krizhevsky et al., 2012), VGGNet (Simonyan & Zisserman, 2014), GoogleNet (Szegedy et al., 2015), and ResNet (He et al., 2016a)....

    [...]

Journal ArticleDOI
01 Jan 1998
TL;DR: In this article, a graph transformer network (GTN) is proposed for handwritten character recognition, which can be used to synthesize a complex decision surface that can classify high-dimensional patterns, such as handwritten characters.
Abstract: Multilayer neural networks trained with the back-propagation algorithm constitute the best example of a successful gradient based learning technique. Given an appropriate network architecture, gradient-based learning algorithms can be used to synthesize a complex decision surface that can classify high-dimensional patterns, such as handwritten characters, with minimal preprocessing. This paper reviews various methods applied to handwritten character recognition and compares them on a standard handwritten digit recognition task. Convolutional neural networks, which are specifically designed to deal with the variability of 2D shapes, are shown to outperform all other techniques. Real-life document recognition systems are composed of multiple modules including field extraction, segmentation recognition, and language modeling. A new learning paradigm, called graph transformer networks (GTN), allows such multimodule systems to be trained globally using gradient-based methods so as to minimize an overall performance measure. Two systems for online handwriting recognition are described. Experiments demonstrate the advantage of global training, and the flexibility of graph transformer networks. A graph transformer network for reading a bank cheque is also described. It uses convolutional neural network character recognizers combined with global training techniques to provide record accuracy on business and personal cheques. It is deployed commercially and reads several million cheques per day.

42,067 citations

Proceedings ArticleDOI
20 Jun 2005
TL;DR: It is shown experimentally that grids of histograms of oriented gradient (HOG) descriptors significantly outperform existing feature sets for human detection, and the influence of each stage of the computation on performance is studied.
Abstract: We study the question of feature sets for robust visual object recognition; adopting linear SVM based human detection as a test case. After reviewing existing edge and gradient based descriptors, we show experimentally that grids of histograms of oriented gradient (HOG) descriptors significantly outperform existing feature sets for human detection. We study the influence of each stage of the computation on performance, concluding that fine-scale gradients, fine orientation binning, relatively coarse spatial binning, and high-quality local contrast normalization in overlapping descriptor blocks are all important for good results. The new approach gives near-perfect separation on the original MIT pedestrian database, so we introduce a more challenging dataset containing over 1800 annotated human images with a large range of pose variations and backgrounds.

31,952 citations


"Neural Architecture Search with Rei..." refers methods in this paper

  • ...Along with this success is a paradigm shift from feature designing to architecture designing, i.e., from SIFT (Lowe, 1999), and HOG (Dalal & Triggs, 2005), to AlexNet (Krizhevsky et al., 2012), VGGNet (Simonyan & Zisserman, 2014), GoogleNet (Szegedy et al., 2015), and ResNet (He et al., 2016a)....

    [...]