scispace - formally typeset
Search or ask a question
Posted Content

Neural Architecture Search with Reinforcement Learning

Barret Zoph1, Quoc V. Le1
05 Nov 2016-arXiv: Learning-
TL;DR: This paper uses a recurrent network to generate the model descriptions of neural networks and trains this RNN with reinforcement learning to maximize the expected accuracy of the generated architectures on a validation set.
Abstract: Neural networks are powerful and flexible models that work well for many difficult learning tasks in image, speech and natural language understanding. Despite their success, neural networks are still hard to design. In this paper, we use a recurrent network to generate the model descriptions of neural networks and train this RNN with reinforcement learning to maximize the expected accuracy of the generated architectures on a validation set. On the CIFAR-10 dataset, our method, starting from scratch, can design a novel network architecture that rivals the best human-invented architecture in terms of test set accuracy. Our CIFAR-10 model achieves a test error rate of 3.65, which is 0.09 percent better and 1.05x faster than the previous state-of-the-art model that used a similar architectural scheme. On the Penn Treebank dataset, our model can compose a novel recurrent cell that outperforms the widely-used LSTM cell, and other state-of-the-art baselines. Our cell achieves a test set perplexity of 62.4 on the Penn Treebank, which is 3.6 perplexity better than the previous state-of-the-art model. The cell can also be transferred to the character language modeling task on PTB and achieves a state-of-the-art perplexity of 1.214.
Citations
More filters
Proceedings ArticleDOI
15 Jun 2019
TL;DR: In this paper, an inverse reinforcement learning method for architecture search (IRLAS) is proposed, which trains an agent to learn to search network structures that are topologically inspired by human-designed networks.
Abstract: In this paper, we propose an inverse reinforcement learning method for architecture search (IRLAS), which trains an agent to learn to search network structures that are topologically inspired by human-designed network. Most existing architecture search approaches totally neglect the topological characteristics of architectures, which results in complicated architecture with a high inference latency. Motivated by the fact that human-designed networks are elegant in topology with a fast inference speed, we propose a mirror stimuli function inspired by biological cognition theory to extract the abstract topological knowledge of an expert human-design network (ResNeXt). To avoid raising a too strong prior over the search space, we introduce inverse reinforcement learning to train the mirror stimuli function and exploit it as a heuristic guidance for architecture search, easily generalized to different architecture search algorithms. On CIFAR-10, the best architecture searched by our proposed IRLAS achieves 2.60% error rate. For ImageNet mobile setting, our model achieves a state-of-the-art top-1 accuracy 75.28%, while being 2~4x faster than most auto-generated architectures. A fast version of this model achieves 10% faster than MobileNetV2, while maintaining a higher accuracy.

30 citations

Posted Content
TL;DR: The results here demonstrate that more robust architectures exist as well as opens up a new range of possibilities for the development and exploration of neural networks using neural architecture search.
Abstract: Neural networks are prone to misclassify slightly modified input images. Recently, many defences have been proposed, but none have improved the robustness of neural networks consistently. Here, we propose to use adversarial attacks as a function evaluation to search for neural architectures that can resist such attacks automatically. Experiments on neural architecture search algorithms from the literature show that although accurate, they are not able to find robust architectures. A significant reason for this lies in their limited search space. By creating a novel neural architecture search with options for dense layers to connect with convolution layers and vice-versa as well as the addition of concatenation layers in the search, we were able to evolve an architecture that is inherently accurate on adversarial samples. Interestingly, this inherent robustness of the evolved architecture rivals state-of-the-art defences such as adversarial training while being trained only on the non-adversarial samples. Moreover, the evolved architecture makes use of some peculiar traits which might be useful for developing even more robust ones. Thus, the results here confirm that more robust architectures exist as well as opens up a new realm of feasibilities for the development and exploration of neural networks. Code available at this http URL.

30 citations


Cites background or methods from "Neural Architecture Search with Rei..."

  • ...Some widely used search strategies for NAS are: Random Search, Bayesian Optimization, Evolutionary Methods, Reinforcement Learning, and Gradient Based Methods....

    [...]

  • ...Currently, most of the current AAS suffer from high computational cost while searching in a relatively small search space [44],[17],[29]....

    [...]

  • ...Most of the algorithms for AAS are either based on reinforcement learning [44],[45],[27], [3] or evolutionary computation [41], [22], [29],[17], [28]....

    [...]

  • ...Some widely used search strategies for AAS are: Random Search, Bayesian Optimization [15], Evolutionary Methods [29],[41],[17],[28], Reinforcement Learning [44], [3], [6], [43],[7], [27] and Gradient Based Methods [4], [19], [18]....

    [...]

Journal ArticleDOI
TL;DR: The physical-based model, data-driven models, and hybrid model were compared using the FLUXNET2015 dataset and the Shapley additive explanations (SHAP) was introduced to quantify the contributions of input features to evapotranspiration estimation.

30 citations

Proceedings ArticleDOI
13 Jul 2019
TL;DR: A novel multi-objective optimization method for evolving state-of-the-art deep CNNs in real-life applications, which automatically evolves the non-dominant solutions at the Pareto front is proposed.
Abstract: In recent years, convolutional neural networks (CNNs) have become deeper in order to achieve better classification accuracy in image classification. However, it is difficult to deploy the state-of-the-art deep CNNs for industrial use due to the difficulty of manually fine-tuning the hyperparameters and the trade-off between classification accuracy and computational cost. This paper proposes a novel multi-objective optimization method for evolving state-of-the-art deep CNNs in real-life applications, which automatically evolves the non-dominant solutions at the Pareto front. Three major contributions are made: Firstly, a new encoding strategy is designed to encode one of the best state-of-the-art CNNs; With the classification accuracy and the number of floating point operations as the two objectives, a multi-objective particle swarm optimization method is developed to evolve the non-dominant solutions; Last but not least, a new infrastructure is designed to boost the experiments by concurrently running the experiments on multiple GPUs across multiple machines, and a Python library is developed and released to manage the infrastructure. The experimental results demonstrate that the non-dominant solutions found by the proposed method form a clear Pareto front, and the proposed infrastructure is able to almost linearly reduce the running time.

30 citations


Cites background from "Neural Architecture Search with Rei..."

  • ...In recent years, neural architecture search (NAS) [4] [23], which...

    [...]

Posted Content
TL;DR: This paper proposes a Fast Neural Network Adaptation (FNA) method, which can adapt both the architecture and parameters of a seed network to become a network with different depth, width, or kernels via a Parameter Remapping technique, making it possible to utilize NAS for detection/segmentation tasks a lot more efficiently.
Abstract: Deep neural networks achieve remarkable performance in many computer vision tasks. Most state-of-the-art (SOTA) semantic segmentation and object detection approaches reuse neural network architectures designed for image classification as the backbone, commonly pre-trained on ImageNet. However, performance gains can be achieved by designing network architectures specifically for detection and segmentation, as shown by recent neural architecture search (NAS) research for detection and segmentation. One major challenge though, is that ImageNet pre-training of the search space representation (a.k.a. super network) or the searched networks incurs huge computational cost. In this paper, we propose a Fast Neural Network Adaptation (FNA) method, which can adapt both the architecture and parameters of a seed network (e.g. a high performing manually designed backbone) to become a network with different depth, width, or kernels via a Parameter Remapping technique, making it possible to utilize NAS for detection/segmentation tasks a lot more efficiently. In our experiments, we conduct FNA on MobileNetV2 to obtain new networks for both segmentation and detection that clearly out-perform existing networks designed both manually and by NAS. The total computation cost of FNA is significantly less than SOTA segmentation/detection NAS approaches: 1737$\times$ less than DPC, 6.8$\times$ less than Auto-DeepLab and 7.4$\times$ less than DetNAS. The code is available at this https URL.

30 citations


Cites methods from "Neural Architecture Search with Rei..."

  • ...Neural Architecture Search With reinforcement learning (RL) and evolutionary algorithm (EA) being applied to NAS methods, many works (Zoph & Le, 2016; Zoph et al., 2017; Real et al., 2018) make great progress in promoting the performances of neural networks....

    [...]

References
More filters
Proceedings ArticleDOI
27 Jun 2016
TL;DR: In this article, the authors proposed a residual learning framework to ease the training of networks that are substantially deeper than those used previously, which won the 1st place on the ILSVRC 2015 classification task.
Abstract: Deeper neural networks are more difficult to train. We present a residual learning framework to ease the training of networks that are substantially deeper than those used previously. We explicitly reformulate the layers as learning residual functions with reference to the layer inputs, instead of learning unreferenced functions. We provide comprehensive empirical evidence showing that these residual networks are easier to optimize, and can gain accuracy from considerably increased depth. On the ImageNet dataset we evaluate residual nets with a depth of up to 152 layers—8× deeper than VGG nets [40] but still having lower complexity. An ensemble of these residual nets achieves 3.57% error on the ImageNet test set. This result won the 1st place on the ILSVRC 2015 classification task. We also present analysis on CIFAR-10 with 100 and 1000 layers. The depth of representations is of central importance for many visual recognition tasks. Solely due to our extremely deep representations, we obtain a 28% relative improvement on the COCO object detection dataset. Deep residual nets are foundations of our submissions to ILSVRC & COCO 2015 competitions1, where we also won the 1st places on the tasks of ImageNet detection, ImageNet localization, COCO detection, and COCO segmentation.

123,388 citations

Proceedings Article
01 Jan 2015
TL;DR: This work introduces Adam, an algorithm for first-order gradient-based optimization of stochastic objective functions, based on adaptive estimates of lower-order moments, and provides a regret bound on the convergence rate that is comparable to the best known results under the online convex optimization framework.
Abstract: We introduce Adam, an algorithm for first-order gradient-based optimization of stochastic objective functions, based on adaptive estimates of lower-order moments. The method is straightforward to implement, is computationally efficient, has little memory requirements, is invariant to diagonal rescaling of the gradients, and is well suited for problems that are large in terms of data and/or parameters. The method is also appropriate for non-stationary objectives and problems with very noisy and/or sparse gradients. The hyper-parameters have intuitive interpretations and typically require little tuning. Some connections to related algorithms, on which Adam was inspired, are discussed. We also analyze the theoretical convergence properties of the algorithm and provide a regret bound on the convergence rate that is comparable to the best known results under the online convex optimization framework. Empirical results demonstrate that Adam works well in practice and compares favorably to other stochastic optimization methods. Finally, we discuss AdaMax, a variant of Adam based on the infinity norm.

111,197 citations

Proceedings Article
04 Sep 2014
TL;DR: This work investigates the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting using an architecture with very small convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers.
Abstract: In this work we investigate the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting. Our main contribution is a thorough evaluation of networks of increasing depth using an architecture with very small (3x3) convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers. These findings were the basis of our ImageNet Challenge 2014 submission, where our team secured the first and the second places in the localisation and classification tracks respectively. We also show that our representations generalise well to other datasets, where they achieve state-of-the-art results. We have made our two best-performing ConvNet models publicly available to facilitate further research on the use of deep visual representations in computer vision.

55,235 citations


"Neural Architecture Search with Rei..." refers methods in this paper

  • ...Along with this success is a paradigm shift from feature designing to architecture designing, i.e., from SIFT (Lowe, 1999), and HOG (Dalal & Triggs, 2005), to AlexNet (Krizhevsky et al., 2012), VGGNet (Simonyan & Zisserman, 2014), GoogleNet (Szegedy et al., 2015), and ResNet (He et al., 2016a)....

    [...]

Journal ArticleDOI
01 Jan 1998
TL;DR: In this article, a graph transformer network (GTN) is proposed for handwritten character recognition, which can be used to synthesize a complex decision surface that can classify high-dimensional patterns, such as handwritten characters.
Abstract: Multilayer neural networks trained with the back-propagation algorithm constitute the best example of a successful gradient based learning technique. Given an appropriate network architecture, gradient-based learning algorithms can be used to synthesize a complex decision surface that can classify high-dimensional patterns, such as handwritten characters, with minimal preprocessing. This paper reviews various methods applied to handwritten character recognition and compares them on a standard handwritten digit recognition task. Convolutional neural networks, which are specifically designed to deal with the variability of 2D shapes, are shown to outperform all other techniques. Real-life document recognition systems are composed of multiple modules including field extraction, segmentation recognition, and language modeling. A new learning paradigm, called graph transformer networks (GTN), allows such multimodule systems to be trained globally using gradient-based methods so as to minimize an overall performance measure. Two systems for online handwriting recognition are described. Experiments demonstrate the advantage of global training, and the flexibility of graph transformer networks. A graph transformer network for reading a bank cheque is also described. It uses convolutional neural network character recognizers combined with global training techniques to provide record accuracy on business and personal cheques. It is deployed commercially and reads several million cheques per day.

42,067 citations

Proceedings ArticleDOI
20 Jun 2005
TL;DR: It is shown experimentally that grids of histograms of oriented gradient (HOG) descriptors significantly outperform existing feature sets for human detection, and the influence of each stage of the computation on performance is studied.
Abstract: We study the question of feature sets for robust visual object recognition; adopting linear SVM based human detection as a test case. After reviewing existing edge and gradient based descriptors, we show experimentally that grids of histograms of oriented gradient (HOG) descriptors significantly outperform existing feature sets for human detection. We study the influence of each stage of the computation on performance, concluding that fine-scale gradients, fine orientation binning, relatively coarse spatial binning, and high-quality local contrast normalization in overlapping descriptor blocks are all important for good results. The new approach gives near-perfect separation on the original MIT pedestrian database, so we introduce a more challenging dataset containing over 1800 annotated human images with a large range of pose variations and backgrounds.

31,952 citations


"Neural Architecture Search with Rei..." refers methods in this paper

  • ...Along with this success is a paradigm shift from feature designing to architecture designing, i.e., from SIFT (Lowe, 1999), and HOG (Dalal & Triggs, 2005), to AlexNet (Krizhevsky et al., 2012), VGGNet (Simonyan & Zisserman, 2014), GoogleNet (Szegedy et al., 2015), and ResNet (He et al., 2016a)....

    [...]