scispace - formally typeset
Search or ask a question

Neural computations underlying arbitration between model-based and model-free learning

01 Jun 2013-Vol. 81, pp 687-699
TL;DR: In this paper, the authors provide evidence for an arbitration mechanism that allocates the degree of control over behavior by model-based and model-free systems as a function of the reliability of their respective predictions.
Abstract: There is accumulating neural evidence to support the existence of two distinct systems for guiding action selection, a deliberative "model-based" and a reflexive "model-free" system. However, little is known about how the brain determines which of these systems controls behavior at one moment in time. We provide evidence for an arbitration mechanism that allocates the degree of control over behavior by model-based and model-free systems as a function of the reliability of their respective predictions. We show that the inferior lateral prefrontal and frontopolar cortex encode both reliability signals and the output of a comparison between those signals, implicating these regions in the arbitration process. Moreover, connectivity between these regions and model-free valuation areas is negatively modulated by the degree of model-based control in the arbitrator, suggesting that arbitration may work through modulation of the model-free valuation system when the arbitrator deems that the model-based system should drive behavior.
Citations
More filters
Journal ArticleDOI
TL;DR: Insightful insights from habit research are applied to understand stress and addiction as well as the design of effective interventions to change health and consumer behaviors.
Abstract: As the proverbial creatures of habit, people tend to repeat the same behaviors in recurring contexts. This review characterizes habits in terms of their cognitive, motivational, and neurobiological properties. In so doing, we identify three ways that habits interface with deliberate goal pursuit: First, habits form as people pursue goals by repeating the same responses in a given context. Second, as outlined in computational models, habits and deliberate goal pursuit guide actions synergistically, although habits are the efficient, default mode of response. Third, people tend to infer from the frequency of habit performance that the behavior must have been intended. We conclude by applying insights from habit research to understand stress and addiction as well as the design of effective interventions to change health and consumer behaviors.

765 citations

Journal ArticleDOI
TL;DR: Drawing on computational approaches to value-based decision-making and reinforcement learning, this work proposes a unifying conceptual framework for understanding the neural bases of diverse forms of emotion regulation.
Abstract: Various brain regions have been implicated in emotion regulation, although this process remains poorly understood. In this Opinion article, Etkin and colleagues bring together neuroimaging findings and ideas from value-based decision-making and reinforcement learning to propose a conceptual framework for emotion regulation. Emotions are powerful determinants of behaviour, thought and experience, and they may be regulated in various ways. Neuroimaging studies have implicated several brain regions in emotion regulation, including the ventral anterior cingulate and ventromedial prefrontal cortices, as well as the lateral prefrontal and parietal cortices. Drawing on computational approaches to value-based decision-making and reinforcement learning, we propose a unifying conceptual framework for understanding the neural bases of diverse forms of emotion regulation.

743 citations

Journal ArticleDOI
17 Jul 2015-Science
TL;DR: This work charts advances over the past several decades that address challenges of perception and action under uncertainty through the lens of computation to identify decisions with highest expected utility, while taking into consideration the costs of computation in complex real-world problems in which most relevant calculations can only be approximated.
Abstract: After growing up together, and mostly growing apart in the second half of the 20th century, the fields of artificial intelligence (AI), cognitive science, and neuroscience are reconverging on a shared view of the computational foundations of intelligence that promotes valuable cross-disciplinary exchanges on questions, methods, and results. We chart advances over the past several decades that address challenges of perception and action under uncertainty through the lens of computation. Advances include the development of representations and inferential procedures for large-scale probabilistic inference and machinery for enabling reflection and decisions about tradeoffs in effort, precision, and timeliness of computations. These tools are deployed toward the goal of computational rationality: identifying decisions with highest expected utility, while taking into consideration the costs of computation in complex real-world problems in which most relevant calculations can only be approximated. We highlight key concepts with examples that show the potential for interchange between computer science, cognitive science, and neuroscience.

500 citations

Journal ArticleDOI
TL;DR: An Active Inference account of homeostatic regulation and behavioural control of Pavlovian, habitual and goal-directed behaviours explained with one scheme.

408 citations

Journal ArticleDOI
TL;DR: A comprehensive review of functional neuroimaging, electrophysiological, lesion, and structural connectivity studies on the emotion-related functions of 8 subregions spanning the entire PFC is provided and the appraisal-by-content model is introduced, which provides a new framework for integrating the diverse range of empirical findings.
Abstract: The prefrontal cortex (PFC) plays a critical role in the generation and regulation of emotion. However, we lack an integrative framework for understanding how different emotion-related functions are organized across the entire expanse of the PFC, as prior reviews have generally focused on specific emotional processes (e.g., decision making) or specific anatomical regions (e.g., orbitofrontal cortex). Additionally, psychological theories and neuroscientific investigations have proceeded largely independently because of the lack of a common framework. Here, we provide a comprehensive review of functional neuroimaging, electrophysiological, lesion, and structural connectivity studies on the emotion-related functions of 8 subregions spanning the entire PFC. We introduce the appraisal-by-content model, which provides a new framework for integrating the diverse range of empirical findings. Within this framework, appraisal serves as a unifying principle for understanding the PFC's role in emotion, while relative content-specialization serves as a differentiating principle for understanding the role of each subregion. A synthesis of data from affective, social, and cognitive neuroscience studies suggests that different PFC subregions are preferentially involved in assigning value to specific types of inputs: exteroceptive sensations, episodic memories and imagined future events, viscero-sensory signals, viscero-motor signals, actions, others' mental states (e.g., intentions), self-related information, and ongoing emotions. We discuss the implications of this integrative framework for understanding emotion regulation, value-based decision making, emotional salience, and refining theoretical models of emotion. This framework provides a unified understanding of how emotional processes are organized across PFC subregions and generates new hypotheses about the mechanisms underlying adaptive and maladaptive emotional functioning. (PsycINFO Database Record

391 citations

References
More filters
Journal ArticleDOI
TL;DR: In this article, a new estimate minimum information theoretical criterion estimate (MAICE) is introduced for the purpose of statistical identification, which is free from the ambiguities inherent in the application of conventional hypothesis testing procedure.
Abstract: The history of the development of statistical hypothesis testing in time series analysis is reviewed briefly and it is pointed out that the hypothesis testing procedure is not adequately defined as the procedure for statistical model identification. The classical maximum likelihood estimation procedure is reviewed and a new estimate minimum information theoretical criterion (AIC) estimate (MAICE) which is designed for the purpose of statistical identification is introduced. When there are several competing models the MAICE is defined by the model and the maximum likelihood estimates of the parameters which give the minimum of AIC defined by AIC = (-2)log-(maximum likelihood) + 2(number of independently adjusted parameters within the model). MAICE provides a versatile procedure for statistical model identification which is free from the ambiguities inherent in the application of conventional hypothesis testing procedure. The practical utility of MAICE in time series analysis is demonstrated with some numerical examples.

47,133 citations

Book
19 Jun 2013
TL;DR: The second edition of this book is unique in that it focuses on methods for making formal statistical inference from all the models in an a priori set (Multi-Model Inference).
Abstract: Introduction * Information and Likelihood Theory: A Basis for Model Selection and Inference * Basic Use of the Information-Theoretic Approach * Formal Inference From More Than One Model: Multi-Model Inference (MMI) * Monte Carlo Insights and Extended Examples * Statistical Theory and Numerical Results * Summary

36,993 citations

01 Jan 2005
TL;DR: In this paper, the problem of selecting one of a number of models of different dimensions is treated by finding its Bayes solution, and evaluating the leading terms of its asymptotic expansion.
Abstract: The problem of selecting one of a number of models of different dimensions is treated by finding its Bayes solution, and evaluating the leading terms of its asymptotic expansion. These terms are a valid large-sample criterion beyond the Bayesian context, since they do not depend on the a priori distribution.

36,760 citations

Journal ArticleDOI
14 Mar 1997-Science
TL;DR: Findings in this work indicate that dopaminergic neurons in the primate whose fluctuating output apparently signals changes or errors in the predictions of future salient and rewarding events can be understood through quantitative theories of adaptive optimizing control.
Abstract: The capacity to predict future events permits a creature to detect, model, and manipulate the causal structure of its interactions with its environment. Behavioral experiments suggest that learning is driven by changes in the expectations about future salient events such as rewards and punishments. Physiological work has recently complemented these studies by identifying dopaminergic neurons in the primate whose fluctuating output apparently signals changes or errors in the predictions of future salient and rewarding events. Taken together, these findings can be understood through quantitative theories of adaptive optimizing control.

8,163 citations

Journal ArticleDOI
TL;DR: This paper presents convergence properties of the Nelder--Mead algorithm applied to strictly convex functions in dimensions 1 and 2, and proves convergence to a minimizer for dimension 1, and various limited convergence results for dimension 2.
Abstract: The Nelder--Mead simplex algorithm, first published in 1965, is an enormously popular direct search method for multidimensional unconstrained minimization. Despite its widespread use, essentially no theoretical results have been proved explicitly for the Nelder--Mead algorithm. This paper presents convergence properties of the Nelder--Mead algorithm applied to strictly convex functions in dimensions 1 and 2. We prove convergence to a minimizer for dimension 1, and various limited convergence results for dimension 2. A counterexample of McKinnon gives a family of strictly convex functions in two dimensions and a set of initial conditions for which the Nelder--Mead algorithm converges to a nonminimizer. It is not yet known whether the Nelder--Mead method can be proved to converge to a minimizer for a more specialized class of convex functions in two dimensions.

7,141 citations