scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Neural Contributions of the Hypothalamus to Parental Behaviour

29 Jun 2021-International Journal of Molecular Sciences (Multidisciplinary Digital Publishing Institute)-Vol. 22, Iss: 13, pp 6998
TL;DR: In this article, the authors present newly discovered aspects of neural circuits within the hypothalamus that regulate parental behaviours. But they do not discuss the mechanism and function of neural networks underlying parental care and aggression against pups.
Abstract: Parental behaviour is a comprehensive set of neural responses to social cues. The neural circuits that govern parental behaviour reside in several putative nuclei in the brain. Melanin concentrating hormone (MCH), a neuromodulator that integrates physiological functions, has been confirmed to be involved in parental behaviour, particularly in crouching behaviour during nursing. Abolishing MCH neurons in innate MCH knockout males promotes infanticide in virgin male mice. To understand the mechanism and function of neural networks underlying parental care and aggression against pups, it is essential to understand the basic organisation and function of the involved nuclei. This review presents newly discovered aspects of neural circuits within the hypothalamus that regulate parental behaviours.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: The similarities and differences in opioid receptor-mediated regulation of neurotransmission across different brain regions are explored and how future studies can consider potential cell-type, regional, and neural pathway-specific effects of opioid receptors in order to better understand how opioid receptors modulate brain function is understood.
Abstract: Opioids mediate their effects via opioid receptors: mu, delta, and kappa. At the neuronal level, opioid receptors are generally inhibitory, presynaptically reducing neurotransmitter release and postsynaptically hyperpolarizing neurons. However, opioid receptor-mediated regulation of neuronal function and synaptic transmission is not uniform in expression pattern and mechanism across the brain. The localization of receptors within specific cell types and neurocircuits determine the effects that endogenous and exogenous opioids have on brain function. In this review we will explore the similarities and differences in opioid receptor-mediated regulation of neurotransmission across different brain regions. We discuss how future studies can consider potential cell-type, regional, and neural pathway-specific effects of opioid receptors in order to better understand how opioid receptors modulate brain function.

12 citations

Journal ArticleDOI
TL;DR: In this article , a synthesis of neuroimaging investigations showed that the hypothalamus is involved in multiple and diverse facets of human socioemotional behavior through widespread functional interactions with other cortical and subcortical regions.
Abstract: Historical evidence from stimulation and lesion studies in animals and humans demonstrated a close association between the hypothalamus and typical and atypical socioemotional behavior. A central hypothalamic contribution to regulation of socioemotional responses was also provided indirectly by studies on oxytocin and arginine vasopressin. However, a limited number of studies have so far directly investigated the contribution of the hypothalamus in human socioemotional behavior. To reconsider the functional role of the evolutionarily conserved hypothalamic region in regulating human social behavior, here I provide a synthesis of neuroimaging investigations showing that the hypothalamus is involved in multiple and diverse facets of human socioemotional behavior through widespread functional interactions with other cortical and subcortical regions. These neuroimaging findings are then integrated with recent optogenetics studies in animals demonstrating that the hypothalamus plays a more active role in eliciting socioemotional responses and is not simply a downstream effector of higher-level brain systems. Building on the aforementioned evidence, the hypothalamus is argued to substantially contribute to a continuum of human socioemotional behaviors promoting survival and preservation of the species that extends from exploratory and approaching responses facilitating social bonding to aggressive and avoidance responses aimed to protect and defend formed relationships.

1 citations

Journal ArticleDOI
TL;DR: In this article , the authors consider the evidence for all sides and present an alternative explanation: neurochemical identity, including classical neurotransmitter content, is subject to change, and posit that MCH neurons may release GABA and/or glutamate at different points according to environmental and contextual factors.
References
More filters
Journal ArticleDOI
21 Mar 1996-Nature
TL;DR: It is shown that one mRNA that is overexpressed in the hypothalamus of ob/ob mice encodes the neuropeptide melanin-concentrating hormone (MCH), which suggests that MCH participates in the leptin regulation of body weight.
Abstract: The hypothalamus plays a central role in the integrated regulation of energy homeostasis and body weight, and a number of hypothalamic neuropeptides, such as neuropeptide Y (ref. 1), galanin, CRH (ref. 3) and GLP-1 (ref. 4), have been implicated in the mediation of these effects. To discover new hypothalmic peptides involved in the regulation of body weight, we used differential display polymerase chain reaction to identify messenger RNAs that are differentially expressed in the hypothalamus of ob/+ compared with ob/ob C57B1/6J mice. We show here that one mRNA that is overexpressed in the hypothalamus of ob/ob mice encodes the neuropeptide melanin-concentrating hormone (MCH). Fasting further increased expression of MCH mRNA in both normal and obese animals. Neurons containing MCH are located in the zona incerta and in the lateral hypothalamus. These areas are involved in regulation of ingestive behaviour, but the role of MCH in mammalian physiology is unknown. To determine whether MCH is involved in the regulation of feeding, we injected MCH into the lateral ventricles of rats and found that their food consumption increased. These findings suggest that MCH participates in the hypothalamic regulation of body weight.

1,325 citations

Journal ArticleDOI
TL;DR: Differential regulation of neuropeptide receptor expression may explain species differences in the ability to form pair bonds and have intriguing implications for the neurobiology of social attachment in the authors' own species.
Abstract: A neurobiological model for pair-bond formation has emerged from studies in monogamous rodents. The neuropeptides oxytocin and vasopressin contribute to the processing of social cues necessary for individual recognition. Mesolimbic dopamine is involved in reinforcement and reward learning. Concurrent activation of neuropeptide and dopamine receptors in the reward centers of the brain during mating results in a conditioned partner preference, observed as a pair bond. Differential regulation of neuropeptide receptor expression may explain species differences in the ability to form pair bonds. These and other studies discussed here have intriguing implications for the neurobiology of social attachment in our own species.

1,287 citations

Journal ArticleDOI
17 Dec 1998-Nature
TL;DR: MCH is a critical regulator of feeding and energy balance which acts downstream of leptin and the melanocortin system, and that deletion of a gene encoding a single orexigenic peptide can result in leanness.
Abstract: Feeding is influenced by hypothalamic neuropeptides that promote (orexigenic peptides) or inhibit feeding1. Of these, neuropeptide Y (NPY) in the arcuate nucleus2 and melanin-concentrating hormone (MCH)3 and orexins/hypocretins4,5 in the lateral hypothalamus have received attention because their expression is increased during fasting and because they promote feeding when administered centrally. Surprisingly, absence of the orexigenic neuropeptide NPY fails to alter feeding or body weight in normal mice6. As deficiency of a single component of the pathway that limits food intake (such as leptin or receptors for melanocortin-4)7,8 causes obesity, it has been suggested that orexigenic signals are more redundant than those limiting food intake7,8. To define further the physiological role of MCH and to test the redundancy of orexigenic signals, we generated mice carrying a targeted deletion of the MCH gene. MCH-deficient mice have reduced body weight and leanness due to hypophagia (reduced feeding) and an inappropriately increased metabolic rate, despite their reduced amounts of both leptin and arcuate nucleus pro-opiomelanocortin messenger RNA. Our results show that MCH is a critical regulator of feeding and energy balance which acts downstream of leptin and the melanocortin system, and that deletion of a gene encoding a single orexigenic peptide can result in leanness.

1,174 citations

Journal ArticleDOI
TL;DR: The results suggest that ppMCH‐derived peptides may serve as neurotransmitters or modulators of prominence in a surprisingly expansive projection field of incerto‐hypothalamic neurons.
Abstract: In addition to a nonadecapeptide homologous to the teleost melanin-concentrating hormone (MCH), the amino acid sequence predicted from a rat prepro-MCH (ppMCH) cDNA suggested that at least one (neuropeptide EI, or NEI), and possibly a second (NGE), additional neuropeptide may be encoded by this precursor. Cross-reactivity with epitopes of NEI or NGE can account for reported localization of α-MSH, rat CRF, and human GRF in rat dorsolateral hypothalamic neurons. We have used antisera raised against rat MCH and NEI in immunohistochemical studies at the light and electron microscopic levels, along with hybridization histochemical localization of ppMCH mRNA, to define the organization of this system. As expected, ppMCH mRNA is prominently expressed in cells in the lateral hypothalamic area and zona incerta. The MCH and NEI peptides were extensively colocalized in neurons in both of these areas. In addition, smaller cell groups in the olfactory tubercle and pontine tegmentum were also positively hybridized for ppMCH mRNA and immunostained for MCH and NEI. Fibers stained for MCH and NEI were similarly, and very broadly, distributed throughout the central nervous system in patterns that generally conformed with known projection fields of the lateral hypothalamic area and zona incerta. A differential distribution was seen in at least one region, the interanterodorsal nucleus of the thalamus, which contained a prominent terminal field stained for MCH but not NEI. At the electron microscopic level, MCH-stained perikarya displayed a prominent staining associated with the Golgi apparatus; this was not encountered in NEI-stained cells. Both peptides were distributed similarly in terminals in the lateral hypothalamic area and median eminence, with staining associated principally with dense-cored vesicles. The results suggest that ppMCH-derived peptides may serve as neurotransmitters or modulators of prominence in a surprisingly expansive projection field of incerto-hypothalamic neurons. The terminal distributions of this system seem most compatible with functional roles in generalized arousal and sensorimotor integration, processes previously implicated as being subject to modulation by the lateral hypothalamic area. © 1992 Wiley-Liss, Inc.

1,033 citations

Journal ArticleDOI
22 Feb 2002-Science
TL;DR: This study suggests that, in the mouse, sensory activation of the VNO is essential for sex discrimination of conspecifics and thus ensures gender-specific behavior.
Abstract: The mouse vomeronasal organ (VNO) is thought to mediate social behaviors and neuroendocrine changes elicited by pheromonal cues. The molecular mechanisms underlying the sensory response to pheromones and the behavioral repertoire induced through the VNO are not fully characterized. Using the tools of mouse genetics and multielectrode recording, we demonstrate that the sensory activation of VNO neurons requires TRP2, a putative ion channel of the transient receptor potential family that is expressed exclusively in these neurons. Moreover, we show that male mice deficient in TRP2 expression fail to display male-male aggression, and they initiate sexual and courtship behaviors toward both males and females. Our study suggests that, in the mouse, sensory activation of the VNO is essential for sex discrimination of conspecifics and thus ensures gender-specific behavior.

764 citations

Trending Questions (1)
Which part of brain is active in parenting?

The paper discusses the neural circuits involved in parental behavior, particularly in the hypothalamus.