scispace - formally typeset
Search or ask a question
Journal Article

Neural mechanisms for foraging

TL;DR: It is demonstrated that humans can alternate between two modes of choice, comparative decision-making and foraging, depending on distinct neural mechanisms in ventromedial prefrontal cortex (vmPFC) and anterior cingulate cortex (ACC) using distinct reference frames.
About: This article is published in Journal of Cognitive Neuroscience.The article was published on 2013-01-01 and is currently open access. It has received 439 citations till now. The article focuses on the topics: Foraging.
Citations
More filters
Journal ArticleDOI
24 Jul 2013-Neuron
TL;DR: This work presents a normative model of EVC that integrates three critical factors: the expected payoff from a controlled process, the amount of control that must be invested to achieve that payoff, and the cost in terms of cognitive effort.

1,625 citations


Cites background from "Neural mechanisms for foraging"

  • ...For instance, Kolling et al. (2012) had participants make a series of choices between pairs of options that yielded probabilistic payoffs with known means....

    [...]

Journal ArticleDOI
TL;DR: The neurophysiology of evaluating action course and outcome with respect to their valence is reviewed, i.e., reward and punishment, and initiating short- and long-term adaptations, learning, and decisions.
Abstract: Successful goal-directed behavior requires not only correct action selection, planning, and execution but also the ability to flexibly adapt behavior when performance problems occur or the environment changes. A prerequisite for determining the necessity, type, and magnitude of adjustments is to continuously monitor the course and outcome of one's actions. Feedback-control loops correcting deviations from intended states constitute a basic functional principle of adaptation at all levels of the nervous system. Here, we review the neurophysiology of evaluating action course and outcome with respect to their valence, i.e., reward and punishment, and initiating short- and long-term adaptations, learning, and decisions. Based on studies in humans and other mammals, we outline the physiological principles of performance monitoring and subsequent cognitive, motivational, autonomic, and behavioral adaptation and link them to the underlying neuroanatomy, neurochemistry, psychological theories, and computational models. We provide an overview of invasive and noninvasive systemic measures, such as electrophysiological, neuroimaging, and lesion data. We describe how a wide network of brain areas encompassing frontal cortices, basal ganglia, thalamus, and monoaminergic brain stem nuclei detects and evaluates deviations of actual from predicted states indicating changed action costs or outcomes. This information is used to learn and update stimulus and action values, guide action selection, and recruit adaptive mechanisms that compensate errors and optimize goal achievement.

483 citations

Journal ArticleDOI
20 Jun 2013-Nature
TL;DR: A connection between the circuit-level function of different interneuron types in regulating the flow of information and the behavioural functions served by the cortical circuits is suggested, bolster the hope that functional response diversity during behaviour can in part be explained by cell-type diversity.
Abstract: Neurons in the prefrontal cortex exhibit diverse behavioural correlates, an observation that has been attributed to cell-type diversity. To link identified neuron types with network and behavioural functions, we recorded from the two largest genetically defined inhibitory interneuron classes, the perisomatically targeting parvalbumin (PV) and the dendritically targeting somatostatin (SOM) neurons in anterior cingulate cortex of mice performing a reward foraging task. Here we show that PV and a subtype of SOM neurons form functionally homogeneous populations showing a double dissociation between both their inhibitory effects and behavioural correlates. Out of several events pertaining to behaviour, a subtype of SOM neurons selectively responded at reward approach, whereas PV neurons responded at reward leaving and encoded preceding stay duration. These behavioural correlates of PV and SOM neurons defined a behavioural epoch and a decision variable important for foraging (whether to stay or to leave), a crucial function attributed to the anterior cingulate cortex. Furthermore, PV neurons could fire in millisecond synchrony, exerting fast and powerful inhibition on principal cell firing, whereas the inhibitory effect of SOM neurons on firing output was weak and more variable, consistent with the idea that they respectively control the outputs of, and inputs to, principal neurons. These results suggest a connection between the circuit-level function of different interneuron types in regulating the flow of information and the behavioural functions served by the cortical circuits. Moreover, these observations bolster the hope that functional response diversity during behaviour can in part be explained by cell-type diversity.

445 citations

Journal ArticleDOI
TL;DR: It is argued that frontal-midline theta provides a neurophysiologically plausible mechanism for optimally adjusting behavior to uncertainty, a hallmark of situations that elicit anxiety and demand cognitive control.
Abstract: Evidence from imaging and anatomical studies suggests that the midcingulate cortex (MCC) is a dynamic hub lying at the interface of affect and cognition. In particular, this neural system appears to integrate information about conflict and punishment in order to optimize behavior in the face of action-outcome uncertainty. In a series of meta-analyses, we show how recent human electrophysiological research provides compelling evidence that frontal-midline theta signals reflecting MCC activity are moderated by anxiety and predict adaptive behavioral adjustments. These findings underscore the importance of frontal theta activity to a broad spectrum of control operations. We argue that frontal-midline theta provides a neurophysiologically plausible mechanism for optimally adjusting behavior to uncertainty, a hallmark of situations that elicit anxiety and demand cognitive control. These observations compel a new perspective on the mechanisms guiding motivated learning and behavior and provide a framework for understanding the role of the MCC in temperament and psychopathology.

430 citations

Journal ArticleDOI
TL;DR: A recent integrative theory proposes that dACC serves to specify the currently optimal allocation of control by determining the overall expected value of control (EVC), thereby licensing the associated cognitive effort.
Abstract: The authors propose that dorsal anterior cingulate cortex (dACC) performs a cost/benefit analysis to specify how best to allocate cognitive control. They describe why this theory accounts well for dACC’s role in decision-making, motivation and cognitive control, including its observed role in foraging choice settings.

416 citations

References
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: A review of the research carried out by the Analysis Group at the Oxford Centre for Functional MRI of the Brain (FMRIB) on the development of new methodologies for the analysis of both structural and functional magnetic resonance imaging data.

12,097 citations

Journal ArticleDOI
TL;DR: An automated method for segmenting magnetic resonance head images into brain and non‐brain has been developed and described and examples of results and the results of extensive quantitative testing against “gold‐standard” hand segmentations, and two other popular automated methods.
Abstract: An automated method for segmenting magnetic resonance head images into brain and non-brain has been developed. It is very robust and accurate and has been tested on thousands of data sets from a wide variety of scanners and taken with a wide variety of MR sequences. The method, Brain Extraction Tool (BET), uses a deformable model that evolves to fit the brain's surface by the application of a set of locally adaptive model forces. The method is very fast and requires no preregistration or other pre-processing before being applied. We describe the new method and give examples of results and the results of extensive quantitative testing against "gold-standard" hand segmentations, and two other popular automated methods.

9,887 citations

Journal ArticleDOI
TL;DR: This paper will develop a model for the use of a “patchy habitat” by an optimal predator and depresses the availability of food to itself so that the amount of food gained for time spent in a patch of type i is hi(T), where the function rises to an asymptote.

4,772 citations

Journal ArticleDOI
TL;DR: Interactions among extrastriate, inferotemporal, and posterior parietal regions during visual processing, under different attentional and perceptual conditions, are focused on.

2,917 citations