scispace - formally typeset
Search or ask a question
Book

Neural Networks: A Comprehensive Foundation

16 Jul 1998-
TL;DR: Thorough, well-organized, and completely up to date, this book examines all the important aspects of this emerging technology, including the learning process, back-propagation learning, radial-basis function networks, self-organizing systems, modular networks, temporal processing and neurodynamics, and VLSI implementation of neural networks.
Abstract: From the Publisher: This book represents the most comprehensive treatment available of neural networks from an engineering perspective. Thorough, well-organized, and completely up to date, it examines all the important aspects of this emerging technology, including the learning process, back-propagation learning, radial-basis function networks, self-organizing systems, modular networks, temporal processing and neurodynamics, and VLSI implementation of neural networks. Written in a concise and fluid manner, by a foremost engineering textbook author, to make the material more accessible, this book is ideal for professional engineers and graduate students entering this exciting field. Computer experiments, problems, worked examples, a bibliography, photographs, and illustrations reinforce key concepts.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
Simon Haykin1
TL;DR: Following the discussion of interference temperature as a new metric for the quantification and management of interference, the paper addresses three fundamental cognitive tasks: radio-scene analysis, channel-state estimation and predictive modeling, and the emergent behavior of cognitive radio.
Abstract: Cognitive radio is viewed as a novel approach for improving the utilization of a precious natural resource: the radio electromagnetic spectrum. The cognitive radio, built on a software-defined radio, is defined as an intelligent wireless communication system that is aware of its environment and uses the methodology of understanding-by-building to learn from the environment and adapt to statistical variations in the input stimuli, with two primary objectives in mind: /spl middot/ highly reliable communication whenever and wherever needed; /spl middot/ efficient utilization of the radio spectrum. Following the discussion of interference temperature as a new metric for the quantification and management of interference, the paper addresses three fundamental cognitive tasks. 1) Radio-scene analysis. 2) Channel-state estimation and predictive modeling. 3) Transmit-power control and dynamic spectrum management. This work also discusses the emergent behavior of cognitive radio.

12,172 citations

Journal ArticleDOI
TL;DR: This tutorial gives an overview of the basic ideas underlying Support Vector (SV) machines for function estimation, and includes a summary of currently used algorithms for training SV machines, covering both the quadratic programming part and advanced methods for dealing with large datasets.
Abstract: In this tutorial we give an overview of the basic ideas underlying Support Vector (SV) machines for function estimation. Furthermore, we include a summary of currently used algorithms for training SV machines, covering both the quadratic (or convex) programming part and advanced methods for dealing with large datasets. Finally, we mention some modifications and extensions that have been applied to the standard SV algorithm, and discuss the aspect of regularization from a SV perspective.

10,696 citations

Journal ArticleDOI
TL;DR: A new learning algorithm called ELM is proposed for feedforward neural networks (SLFNs) which randomly chooses hidden nodes and analytically determines the output weights of SLFNs which tends to provide good generalization performance at extremely fast learning speed.

10,217 citations

Journal ArticleDOI
TL;DR: It is suggested that information maximization provides a unifying framework for problems in "blind" signal processing and dependencies of information transfer on time delays are derived.
Abstract: We derive a new self-organizing learning algorithm that maximizes the information transferred in a network of nonlinear units. The algorithm does not assume any knowledge of the input distributions, and is defined here for the zero-noise limit. Under these conditions, information maximization has extra properties not found in the linear case (Linsker 1989). The nonlinearities in the transfer function are able to pick up higher-order moments of the input distributions and perform something akin to true redundancy reduction between units in the output representation. This enables the network to separate statistically independent components in the inputs: a higher-order generalization of principal components analysis. We apply the network to the source separation (or cocktail party) problem, successfully separating unknown mixtures of up to 10 speakers. We also show that a variant on the network architecture is able to perform blind deconvolution (cancellation of unknown echoes and reverberation in a speech signal). Finally, we derive dependencies of information transfer on time delays. We suggest that information maximization provides a unifying framework for problems in "blind" signal processing.

9,157 citations

Journal ArticleDOI
TL;DR: A least squares version for support vector machine (SVM) classifiers that follows from solving a set of linear equations, instead of quadratic programming for classical SVM's.
Abstract: In this letter we discuss a least squares version for support vector machine (SVM) classifiers. Due to equality type constraints in the formulation, the solution follows from solving a set of linear equations, instead of quadratic programming for classical SVM‘s. The approach is illustrated on a two-spiral benchmark classification problem.

8,811 citations