scispace - formally typeset
Search or ask a question
Book

Neural networks and analog computation: beyond the Turing limit

01 Mar 1999-
TL;DR: This chapter discusses Neural Networks and Turing Machines, which are concerned with the construction of neural networks based on the explicit specification of a discrete-time Turing machine.
Abstract: 1 Computational Complexity.- 1.1 Neural Networks.- 1.2 Automata: A General Introduction.- 1.2.1 Input Sets in Computability Theory.- 1.3 Finite Automata.- 1.3.1 Neural Networks and Finite Automata.- 1.4 The Turing Machine.- 1.4.1 Neural Networks and Turing Machines.- 1.5 Probabilistic Turing Machines.- 1.5.1 Neural Networks and Probabilistic Machines.- 1.6 Nondeterministic Turing Machines.- 1.6.1 Nondeterministic Neural Networks.- 1.7 Oracle Turing Machines.- 1.7.1 Neural Networks and Oracle Machines.- 1.8 Advice Turing Machines.- 1.8.1 Circuit Families.- 1.8.2 Neural Networks and Advice Machines.- 1.9 Notes.- 2 The Model.- 2.1 Variants of the Network.- 2.1.1 A "System Diagram" Interpretation.- 2.2 The Network's Computation.- 2.3 Integer Weights.- 3 Networks with Rational Weights.- 3.1 The Turing Equivalence Theorem.- 3.2 Highlights of the Proof.- 3.2.1 Cantor-like Encoding of Stacks.- 3.2.2 Stack Operations.- 3.2.3 General Construction of the Network.- 3.3 The Simulation.- 3.3.1 P-Stack Machines.- 3.4 Network with Four Layers.- 3.4.1 A Layout Of The Construction.- 3.5 Real-Time Simulation.- 3.5.1 Computing in Two Layers.- 3.5.2 Removing the Sigmoid From the Main Layer.- 3.5.3 One Layer Network Simulates TM.- 3.6 Inputs and Outputs.- 3.7 Universal Network.- 3.8 Nondeterministic Computation.- 4 Networks with Real Weights.- 4.1 Simulating Circuit Families.- 4.1.1 The Circuit Encoding.- 4.1.2 A Circuit Retrieval.- 4.1.3 Circuit Simulation By a Network.- 4.1.4 The Combined Network.- 4.2 Networks Simulation by Circuits.- 4.2.1 Linear Precision Suffices.- 4.2.2 The Network Simulation by a Circuit.- 4.3 Networks versus Threshold Circuits.- 4.4 Corollaries.- 5 Kolmogorov Weights: Between P and P/poly.- 5.1 Kolmogorov Complexity and Reals.- 5.2 Tally Oracles and Neural Networks.- 5.3 Kolmogorov Weights and Advice Classes.- 5.4 The Hierarchy Theorem.- 6 Space and Precision.- 6.1 Equivalence of Space and Precision.- 6.2 Fixed Precision Variable Sized Nets.- 7 Universality of Sigmoidal Networks.- 7.1 Alarm Clock Machines.- 7.1.1 Adder Machines.- 7.1.2 Alarm Clock and Adder Machines.- 7.2 Restless Counters.- 7.3 Sigmoidal Networks are Universal.- 7.3.1 Correctness of the Simulation.- 7.4 Conclusions.- 8 Different-limits Networks.- 8.1 At Least Finite Automata.- 8.2 Proof of the Interpolation Lemma.- 9 Stochastic Dynamics.- 9.1 Stochastic Networks.- 9.1.1 The Model.- 9.2 The Main Results.- 9.2.1 Integer Networks.- 9.2.2 Rational Networks.- 9.2.3 Real Networks.- 9.3 Integer Stochastic Networks.- 9.4 Rational Stochastic Networks.- 9.4.1 Rational Set of Choices.- 9.4.2 Real Set of Choices.- 9.5 Real Stochastic Networks.- 9.6 Unreliable Networks.- 9.7 Nondeterministic Stochastic Networks.- 10 Generalized Processor Networks.- 10.1 Generalized Networks: Definition.- 10.2 Bounded Precision.- 10.3 Equivalence with Neural Networks.- 10.4 Robustness.- 11 Analog Computation.- 11.1 Discrete Time Models.- 11.2 Continuous Time Models.- 11.3 Hybrid Models.- 11.4 Dissipative Models.- 12 Computation Beyond the Turing Limit.- 12.1 The Analog Shift Map.- 12.2 Analog Shift and Computation.- 12.3 Physical Relevance.- 12.4 Conclusions.
Citations
More filters
Journal ArticleDOI
TL;DR: This paper considers problems related to stability or stabilizability of linear systems with parametric uncertainty, robust control, time-varying linear systems, nonlinear and hybrid systems, and stochastic optimal control.

785 citations

Journal ArticleDOI
TL;DR: Three contrasting examples of work in this area that address the lexical and grammatical structure of language, Piaget's classic 'A-not-B' error, and active categorical perception in an embodied, situated agent are reviewed.

573 citations

Journal ArticleDOI
TL;DR: It is argued here that two distinct lines of inquiry in molecular biology have converged to form contemporary systems biology.
Abstract: Systems analysis has historically been performed in many areas of biology, including ecology, developmental biology and immunology. More recently, the genomics revolution has catapulted molecular biology into the realm of systems biology. In unicellular organisms and well-defined cell lines of higher organisms, systems approaches are making definitive strides toward scientific understanding and biotechnological applications. We argue here that two distinct lines of inquiry in molecular biology have converged to form contemporary systems biology.

519 citations

Book ChapterDOI
01 Jan 2012
TL;DR: This chapter relates theory of the “spiking neuron” in Section 1 and summarizes the most currently-in-use models of neurons and synaptic plasticity in Section 2, and addresses the computational power and problem of learning in networks of spiking neurons.
Abstract: Spiking Neuron Networks (SNNs) are often referred to as the 3rd gener- ation of neural networks. Highly inspired from natural computing in the brain and recent advances in neurosciences, they derive their strength and interest from an ac- curate modeling of synaptic interactions between neurons, taking into account the time of spike firing. SNNs overcome the computational power of neural networks made of threshold or sigmoidal units. Based on dynamic event-driven processing, they open up new horizons for developing models with an exponential capacity of memorizing and a strong ability to fast adaptation. Today, the main challenge is to discover efficient learning rules that might take advantage of the specific features of SNNs while keeping the nice properties (general-purpose, easy-to-use, available simulators, etc.) of traditional connectionist models. This chapter relates the his- tory of the “spiking neuron” in Section 1 and summarizes the most currently-in-use models of neurons and synaptic plasticity in Section 2. The computational power of SNNs is addressed in Section 3 and the problem of learning in networks of spiking neurons is tackled in Section 4, with insights into the tracks currently explored for solving it. Finally, Section 5 discusses application domains, implementation issues and proposes several simulation frameworks.

346 citations

Journal ArticleDOI
TL;DR: 12 criteria that the human cognitive architecture would have to satisfy in order to be functional are distilled into 12 criteria: flexible behavior, real-time performance, adaptive behavior, vast knowledge base, dynamic behavior, knowledge integration, natural language, learning, development, evolution, and brain realization.
Abstract: Newell (1980; 1990) proposed that cognitive theories be developed in an effort to satisfy multiple criteria and to avoid theo- retical myopia. He provided two overlapping lists of 13 criteria that the human cognitive architecture would have to satisfy in order to be functional. We have distilled these into 12 criteria: flexible behavior, real-time performance, adaptive behavior, vast knowledge base, dynamic behavior, knowledge integration, natural language, learning, development, evolution, and brain realization. There would be greater theoretical progress if we evaluated theories by a broad set of criteria such as these and attended to the weaknesses such evalu- ations revealed. To illustrate how theories can be evaluated we apply these criteria to both classical connectionism (McClelland & Rumel- hart 1986; Rumelhart & McClelland 1986b) and the ACT-R theory (Anderson & Lebiere 1998). The strengths of classical connection- ism on this test derive from its intense effort in addressing empirical phenomena in such domains as language and cognitive development. Its weaknesses derive from its failure to acknowledge a symbolic level to thought. In contrast, ACT-R includes both symbolic and sub- symbolic components. The strengths of the ACT-R theory derive from its tight integration of the symbolic component with the sub- symbolic component. Its weaknesses largely derive from its failure, as yet, to adequately engage in intensive analyses of issues related to certain criteria on Newell's list.

256 citations