scispace - formally typeset
Search or ask a question
Posted Content

Neural Networks with Physics-Informed Architectures and Constraints for Dynamical Systems Modeling.

TL;DR: In this article, the authors develop a framework to learn dynamics models from trajectory data while incorporating a-priori system knowledge as inductive bias, which can greatly improve data efficiency and generalization.
Abstract: Effective inclusion of physics-based knowledge into deep neural network models of dynamical systems can greatly improve data efficiency and generalization. Such a-priori knowledge might arise from physical principles (e.g., conservation laws) or from the system's design (e.g., the Jacobian matrix of a robot), even if large portions of the system dynamics remain unknown. We develop a framework to learn dynamics models from trajectory data while incorporating a-priori system knowledge as inductive bias. More specifically, the proposed framework uses physics-based side information to inform the structure of the neural network itself, and to place constraints on the values of the outputs and the internal states of the model. It represents the system's vector field as a composition of known and unknown functions, the latter of which are parametrized by neural networks. The physics-informed constraints are enforced via the augmented Lagrangian method during the model's training. We experimentally demonstrate the benefits of the proposed approach on a variety of dynamical systems -- including a benchmark suite of robotics environments featuring large state spaces, non-linear dynamics, external forces, contact forces, and control inputs. By exploiting a-priori system knowledge during training, the proposed approach learns to predict the system dynamics two orders of magnitude more accurately than a baseline approach that does not include prior knowledge, given the same training dataset.
References
More filters
Journal ArticleDOI
TL;DR: In this article, the authors introduce physics-informed neural networks, which are trained to solve supervised learning tasks while respecting any given laws of physics described by general nonlinear partial differential equations.

5,448 citations

Journal ArticleDOI
TL;DR: In this article, a family of embedded Runge-Kutta formulae RK5 (4) are derived from these and a small principal truncation term in the fifth order and extended regions of absolute stability.

3,106 citations

Journal ArticleDOI
TL;DR: The main purpose of this paper is to suggest a method for finding the minimum of a functionf(x) subject to the constraintg(x)=0, which consists of replacingf byF=f+λg+1/2cg2, and computing the appropriate value of the Lagrange multiplier.
Abstract: The main purpose of this paper is to suggest a method for finding the minimum of a functionf(x) subject to the constraintg(x)=0. The method consists of replacingf byF=f+λg+1/2cg 2, wherec is a suitably large constant, and computing the appropriate value of the Lagrange multiplier. Only the simplest algorithm is presented. The remaining part of the paper is devoted to a survey of known methods for finding unconstrained minima, with special emphasis on the various gradient techniques that are available. This includes Newton's method and the method of conjugate gradients.

2,282 citations

Journal ArticleDOI
TL;DR: A deep learning-based approach that can handle general high-dimensional parabolic PDEs using backward stochastic differential equations and the gradient of the unknown solution is approximated by neural networks, very much in the spirit of deep reinforcement learning with the gradient acting as the policy function.
Abstract: Developing algorithms for solving high-dimensional partial differential equations (PDEs) has been an exceedingly difficult task for a long time, due to the notoriously difficult problem known as the “curse of dimensionality.” This paper introduces a deep learning-based approach that can handle general high-dimensional parabolic PDEs. To this end, the PDEs are reformulated using backward stochastic differential equations and the gradient of the unknown solution is approximated by neural networks, very much in the spirit of deep reinforcement learning with the gradient acting as the policy function. Numerical results on examples including the nonlinear Black–Scholes equation, the Hamilton–Jacobi–Bellman equation, and the Allen–Cahn equation suggest that the proposed algorithm is quite effective in high dimensions, in terms of both accuracy and cost. This opens up possibilities in economics, finance, operational research, and physics, by considering all participating agents, assets, resources, or particles together at the same time, instead of making ad hoc assumptions on their interrelationships.

1,309 citations

Journal ArticleDOI
TL;DR: A deep learning algorithm similar in spirit to Galerkin methods, using a deep neural network instead of linear combinations of basis functions is proposed, and is implemented for American options in up to 100 dimensions.

1,290 citations