scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Neurocircuitry of stress: central control of the hypothalamo–pituitary–adrenocortical axis

01 Feb 1997-Trends in Neurosciences (Elsevier)-Vol. 20, Iss: 2, pp 78-84
TL;DR: The functional and neuroanatomical data obtained suggest that disease processes involving inappropriate stress control involve dysfunction of processive stress pathways.
About: This article is published in Trends in Neurosciences.The article was published on 1997-02-01. It has received 2217 citations till now. The article focuses on the topics: Stria terminalis & Hypothalamus.
Citations
More filters
Journal ArticleDOI
TL;DR: The long-term effect of the physiologic response to stress is reviewed, which I refer to as allostatic load, which is the ability to achieve stability through change.
Abstract: Over 60 years ago, Selye1 recognized the paradox that the physiologic systems activated by stress can not only protect and restore but also damage the body. What links these seemingly contradictory roles? How does stress influence the pathogenesis of disease, and what accounts for the variation in vulnerability to stress-related diseases among people with similar life experiences? How can stress-induced damage be quantified? These and many other questions still challenge investigators. This article reviews the long-term effect of the physiologic response to stress, which I refer to as allostatic load.2 Allostasis — the ability to achieve stability through change3 — . . .

5,932 citations

Journal ArticleDOI
TL;DR: Developmental changes in prefrontal cortex and limbic brain regions of adolescents across a variety of species, alterations that include an apparent shift in the balance between mesocortical and mesolimbic dopamine systems likely contribute to the unique characteristics of adolescence.

4,985 citations


Cites background from "Neurocircuitry of stress: central c..."

  • ...[240] for review), although some inconsistencies have been reported (with, for instance, reports of the PFC exerting either negative [136] or positive [525] feedback on the HPA axis)....

    [...]

Journal ArticleDOI
TL;DR: The relationship of allostatic load to genetic and developmental predispositions to disease is considered and examples will be given from research pertaining to autonomic, CNS, neuroendocrine, and immune system activity.
Abstract: Adaptation in the face of potentially stressful challenges involves activation of neural, neuroendocrine and neuroendocrine-immune mechanisms. This has been called "allostasis" or "stability through change" by Sterling and Eyer (Fisher S., Reason J. (eds): Handbook of Life Stress, Cognition and Health. J. Wiley Ltd. 1988, p. 631), and allostasis is an essential component of maintaining homeostasis. When these adaptive systems are turned on and turned off again efficiently and not too frequently, the body is able to cope effectively with challenges that it might not otherwise survive. However, there are a number of circumstances in which allostatic systems may either be overstimulated or not perform normally, and this condition has been termed "allostatic load" or the price of adaptation (McEwen and Stellar, Arch. Int. Med. 1993; 153: 2093.). Allostatic load can lead to disease over long periods. Types of allostatic load include (1) frequent activation of allostatic systems; (2) failure to shut off allostatic activity after stress; (3) inadequate response of allostatic systems leading to elevated activity of other, normally counter-regulated allostatic systems after stress. Examples will be given for each type of allostatic load from research pertaining to autonomic, CNS, neuroendocrine, and immune system activity. The relationship of allostatic load to genetic and developmental predispositions to disease is also considered.

3,876 citations

Journal ArticleDOI
TL;DR: As an adjunct to pharmaceutical therapy, social and behavioral interventions such as regular physical activity and social support reduce the chronic stress burden and benefit brain and body health and resilience.
Abstract: The brain is the key organ of the response to stress because it determines what is threatening and, therefore, potentially stressful, as well as the physiological and behavioral responses which can be either adaptive or damaging. Stress involves two-way communication between the brain and the cardiovascular, immune, and other systems via neural and endocrine mechanisms. Beyond the "flight-or-fight" response to acute stress, there are events in daily life that produce a type of chronic stress and lead over time to wear and tear on the body ("allostatic load"). Yet, hormones associated with stress protect the body in the short-run and promote adaptation ("allostasis"). The brain is a target of stress, and the hippocampus was the first brain region, besides the hypothalamus, to be recognized as a target of glucocorticoids. Stress and stress hormones produce both adaptive and maladaptive effects on this brain region throughout the life course. Early life events influence life-long patterns of emotionality and stress responsiveness and alter the rate of brain and body aging. The hippocampus, amygdala, and prefrontal cortex undergo stress-induced structural remodeling, which alters behavioral and physiological responses. As an adjunct to pharmaceutical therapy, social and behavioral interventions such as regular physical activity and social support reduce the chronic stress burden and benefit brain and body health and resilience.

3,062 citations

Journal ArticleDOI
TL;DR: The balance in actions mediated by the two corticosteroid receptor types in these neurons appears critical for neuronal excitability, stress responsiveness, and behavioral adaptation and Dysregulation of this MR/GR balance brings neurons in a vulnerable state with consequences for regulation of the stress response and enhanced vulnerability to disease in genetically predisposed individuals.
Abstract: In this review, we have described the function of MR and GR in hippocampal neurons. The balance in actions mediated by the two corticosteroid receptor types in these neurons appears critical for neuronal excitability, stress responsiveness, and behavioral adaptation. Dysregulation of this MR/GR balance brings neurons in a vulnerable state with consequences for regulation of the stress response and enhanced vulnerability to disease in genetically predisposed individuals. The following specific inferences can be made on the basis of the currently available facts. 1. Corticosterone binds with high affinity to MRs predominantly localized in limbic brain (hippocampus) and with a 10-fold lower affinity to GRs that are widely distributed in brain. MRs are close to saturated with low basal concentrations of corticosterone, while high corticosterone concentrations during stress occupy both MRs and GRs. 2. The neuronal effects of corticosterone, mediated by MRs and GRs, are long-lasting, site-specific, and conditional. The action depends on cellular context, which is in part determined by other signals that can activate their own transcription factors interacting with MR and GR. These interactions provide an impressive diversity and complexity to corticosteroid modulation of gene expression. 3. Conditions of predominant MR activation, i.e., at the circadian trough at rest, are associated with the maintenance of excitability so that steady excitatory inputs to the hippocampal CA1 area result in considerable excitatory hippocampal output. By contrast, additional GR activation, e.g., after acute stress, generally depresses the CA1 hippocampal output. A similar effect is seen after adrenalectomy, indicating a U-shaped dose-response dependency of these cellular responses after the exposure to corticosterone. 4. Corticosterone through GR blocks the stress-induced HPA activation in hypothalamic CRH neurons and modulates the activity of the excitatory and inhibitory neural inputs to these neurons. Limbic (e.g., hippocampal) MRs mediate the effect of corticosterone on the maintenance of basal HPA activity and are of relevance for the sensitivity or threshold of the central stress response system. How this control occurs is not known, but it probably involves a steady excitatory hippocampal output, which regulates a GABA-ergic inhibitory tone on PVN neurons. Colocalized hippocampal GRs mediate a counteracting (i.e., disinhibitory) influence. Through GRs in ascending aminergic pathways, corticosterone potentiates the effect of stressors and arousal on HPA activation. The functional interaction between these corticosteroid-responsive inputs at the level of the PVN is probably the key to understanding HPA dysregulation associated with stress-related brain disorders. 5. Fine-tuning of HPA regulation occurs through MR- and GR-mediated effects on the processing of information in higher brain structures. Under healthy conditions, hippocampal MRs are involved in processes underlying integration of sensory information, interpretation of environmental information, and execution of appropriate behavioral reactions. Activation of hippocampal GRs facilitates storage of information and promotes elimination of inadequate behavioral responses. These behavioral effects mediated by MR and GR are linked, but how they influence endocrine regulation is not well understood. 6. Dexamethasone preferentially targets the pituitary in the blockade of stress-induced HPA activation. The brain penetration of this synthetic glucocorticoid is hampered by the mdr1a P-glycoprotein in the blood-brain barrier. Administration of moderate amounts of dexamethasone partially depletes the brain of corticosterone, and this has destabilizing consequences for excitability and information processing. 7. The set points of HPA regulation and MR/GR balance are genetically programmed, but can be reset by early life experiences involving mother-infant interaction. 8. (ABSTRACT TRUNCATED)

2,548 citations


Cites background from "Neurocircuitry of stress: central c..."

  • ...Corticosteroids have been reported to enhance GABA turnover in the hypothalamus, suggesting that an enhanced GABA-ergic tone may govern inhibitory control over the PVN (40, 251, 252)....

    [...]

  • ...Limbic inputs impinging on the PVN and the hypothalamic GABA-ergic neurons also express high levels of MR in addition to GR (40, 254, 255), suggesting dual regulation of these inputs by corticosteroids (Fig....

    [...]

  • ..., from amygdala) and reducing GABA-ergic tone (40, 256)....

    [...]

  • ...GABA-ergic inhibitory tone is inhibited (and thus becomes excitatory) through a GABA input from the central amygdala (40, 254, 255, 431)....

    [...]

References
More filters
Journal ArticleDOI
TL;DR: A new formulation of the relationship between stress and the processes leading to disease is presented, emphasizing the cascading relationships between environmental factors and genetic predispositions that lead to large individual differences in susceptibility to stress and, in some cases, to disease.
Abstract: Objective: This article presents a new formulation of the relationship between stress and the processes leading to disease. It emphasizes the hidden cost of chronic stress to the body over long time periods, which act as a predisposing factor for the effects of acute, stressful life events. It also presents a model showing how individual differences in the susceptibility to stress are tied to individual behavioral responses to environmental challenges that are coupled to physiologic and pathophysiologic responses. Data Sources: Published original articles from human and animal studies and selected reviews. Literature was surveyed using MEDLINE. Data Extraction: Independent extraction and cross-referencing by us. Data Synthesis: Stress is frequently seen as a significant contributor to disease, and clinical evidence is mounting for specific effects of stress on immune and cardiovascular systems. Yet, until recently, aspects of stress that precipitate disease have been obscure. The concept of homeostasis has failed to help us understand the hidden toll of chronic stress on the body. Rather than maintaining constancy, the physiologic systems within the body fluctuate to meet demands from external forces, a state termed allostasis . In this article, we extend the concept of allostasis over the dimension of time and we define allostatic load as the cost of chronic exposure to fluctuating or heightened neural or neuroendocrine response resulting from repeated or chronic environmental challenge that an individual reacts to as being particularly stressful. Conclusions: This new formulation emphasizes the cascading relationships, beginning early in life, between environmental factors and genetic predispositions that lead to large individual differences in susceptibility to stress and, in some cases, to disease. There are now empirical studies based on this formulation, as well as new insights into mechanisms involving specific changes in neural, neuroendocrine, and immune systems. The practical implications of this formulation for clinical practice and further research are discussed. (Arch Intern Med. 1993;153:2093-2101)

3,308 citations

Journal ArticleDOI
Michael Davis1
TL;DR: The idea that the amygdala, and its many efferent projections, may represent a central fear system involved in both the expression and acquisition of conditioned fear is summarized.
Abstract: Converging evidence now indicates that the amygdala plays a crucial role in the development and expression of conditioned fear. Conditioned fear is a hypothetical construct used to explain the cluster of behavioral effects produced when an initially neutral stimulus is consistently paired with an aversive stimulus. For example, when a light, which initially has no behavioral effect, is paired with an aversive stimulus such as a footshock, the light alone can elicit a constellation of behaviors that are typically used to define a state of fear in animals. To explain these findings, it is generally assumed (cf. McAllister & McAllister 1971 ) that during light-shock pair­ ings (training session ), the shock elicits a variety of behaviors that can be used to infer a central state of fear (unconditioned responses-Figure 1 ). After pairing , the light can produce the same central fear state and thus the same set of bchaviors formerly produced by thc shock. Moreover, the behavioral effects that are produced in animals by this formerly neutral stimulus (now called a conditioned stimulus-CS ) are similar in many respects to the constellation of behaviors that are used to diagnose gener­ alized anxiety in humans (Table 1 ). This chapter summarizes data sup­ porting the idea that the amygdala, and its many efferent projections, may represent a central fear system involved in both the expression and acquisition of conditioned fear.

2,209 citations

Journal ArticleDOI
TL;DR: The hippocampus is capable of mediating inhibition over a wide range of steroid levels, and is distinguished from most potential feedback sites, including the hypothalamus and pituitary, by its high content of both type I and II corticosteroid receptors.
Abstract: There is considerable, although not entirely consistent, evidence that the hippocampus inhibits most aspects of HPA activity, including basal (circadian nadir) and circadian peak secretion as well as the onset and termination of responses to stress. Although much of the evidence for these effects rests only on the measurement of corticosteroids, recent lesion and implant studies indicate that the hippocampus regulates adrenocortical activity at the hypothalamic level, via the expression and secretion of ACTH secretagogues. Such inhibition results largely from the mediation of corticosteroid feedback, although more work is required to determine whether the hippocampus supplies a tonic inhibitory input in the absence of corticosteroids. It must be noted that the hippocampus is not the only feedback site in the adrenocortical system, since removal of its input only reduces, but does not abolish, the efficacy of corticosteroid inhibition, and since other elements of the axis appear eventually to compensate for deficits in feedback regulation. The importance of other feedback sites is further suggested not only by the presence of corticosteroid receptors in other parts of the brain and pituitary, but also by the improved prediction of CRF levels by combined hypothalamic and hippocampal receptor occupancy. The likelihood of feedback mediated by nonhippocampal sites underscores the need for future work to characterize hippocampal influence on HPA activity in the absence of changes in corticosteroid secretion. However, despite the fact that the hippocampus is not the only feedback site, it is distinguished from most potential feedback sites, including the hypothalamus and pituitary, by its high content of both type I and II corticosteroid receptors. The hippocampus is therefore capable of mediating inhibition over a wide range of steroid levels. The low end of this range is represented by corticosteroid inhibition of basal (circadian nadir) HPA activity. The apparent type I receptor specificity of this inhibition and the elevation of trough corticosteroid levels after hippocampal damage support a role for hippocampal type I receptors in regulating basal HPA activity. It is possible that basal activity is controlled in part through hippocampal inhibition of vasopressin, since the inhibition of portal blood vasopressin correlates with lower levels of hippocampal receptor occupancy, and the expression of vasopressin by some CRF neurons is sensitive to very low corticosteroid levels. At the high end of the physiological range, stress-induced or circadian peak corticosteroid secretion correlates strongly with occupancy of the lower affinity hippocampal type II receptors.(ABSTRACT TRUNCATED AT 400 WORDS)

1,672 citations