scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Neuronal circuits of the neocortex

24 Jun 2004-Annual Review of Neuroscience (Annual Reviews)-Vol. 27, Iss: 1, pp 419-451
TL;DR: It is found that, as has long been suspected by cortical neuroanatomists, the same basic laminar and tangential organization of the excitatory neurons of the neocortex is evident wherever it has been sought.
Abstract: We explore the extent to which neocortical circuits generalize, i.e., to what extent can neocortical neurons and the circuits they form be considered as canonical? We find that, as has long been suspected by cortical neuroanatomists, the same basic laminar and tangential organization of the excitatory neurons of the neocortex is evident wherever it has been sought. Similarly, the inhibitory neurons show characteristic morphology and patterns of connections throughout the neocortex. We offer a simple model of cortical processing that is consistent with the major features of cortical circuits: The superficial layer neurons within local patches of cortex, and within areas, cooperate to explore all possible interpretations of different cortical input and cooperatively select an interpretation consistent with their various cortical and subcortical inputs.
Citations
More filters
Journal ArticleDOI
08 Aug 2014-Science
TL;DR: Inspired by the brain’s structure, an efficient, scalable, and flexible non–von Neumann architecture is developed that leverages contemporary silicon technology and is well suited to many applications that use complex neural networks in real time, for example, multiobject detection and classification.
Abstract: Inspired by the brain’s structure, we have developed an efficient, scalable, and flexible non–von Neumann architecture that leverages contemporary silicon technology. To demonstrate, we built a 5.4-billion-transistor chip with 4096 neurosynaptic cores interconnected via an intrachip network that integrates 1 million programmable spiking neurons and 256 million configurable synapses. Chips can be tiled in two dimensions via an interchip communication interface, seamlessly scaling the architecture to a cortexlike sheet of arbitrary size. The architecture is well suited to many applications that use complex neural networks in real time, for example, multiobject detection and classification. With 400-pixel-by-240-pixel video input at 30 frames per second, the chip consumes 63 milliwatts.

3,253 citations

Journal ArticleDOI
12 Jun 2008-Nature
TL;DR: An overview of the current state of fMRI is given, and the current understanding of the haemodynamic signals and the constraints they impose on neuroimaging data interpretation are presented.
Abstract: Functional magnetic resonance imaging (fMRI) is currently the mainstay of neuroimaging in cognitive neuroscience. Advances in scanner technology, image acquisition protocols, experimental design, and analysis methods promise to push forward fMRI from mere cartography to the true study of brain organization. However, fundamental questions concerning the interpretation of fMRI data abound, as the conclusions drawn often ignore the actual limitations of the methodology. Here I give an overview of the current state of fMRI, and draw on neuroimaging and physiological data to present the current understanding of the haemodynamic signals and the constraints they impose on neuroimaging data interpretation.

3,075 citations


Cites background from "Neuronal circuits of the neocortex"

  • ...Buzsaki, Cellular‐synaptic generation of sleep spindles, spike‐and‐wave discharges, and evoked thalamocortical responses in the neocortex of the rat, 17(17), 6783 (1997)....

    [...]

Journal ArticleDOI
20 Sep 2012-Nature
TL;DR: A transcriptional atlas of the adult human brain is described, comprising extensive histological analysis and comprehensive microarray profiling of ∼900 neuroanatomically precise subdivisions in two individuals, to form a high-resolution transcriptional baseline for neurogenetic studies of normal and abnormal human brain function.
Abstract: Neuroanatomically precise, genome-wide maps of transcript distributions are critical resources to complement genomic sequence data and to correlate functional and genetic brain architecture. Here we describe the generation and analysis of a transcriptional atlas of the adult human brain, comprising extensive histological analysis and comprehensive microarray profiling of ~900 neuroanatomically precise subdivisions in two individuals. Transcriptional regulation varies enormously by anatomical location, with different regions and their constituent cell types displaying robust molecular signatures that are highly conserved between individuals. Analysis of differential gene expression and gene co-expression relationships demonstrates that brain-wide variation strongly reflects the distributions of major cell classes such as neurons, oligodendrocytes, astrocytes and microglia. Local neighbourhood relationships between fine anatomical subdivisions are associated with discrete neuronal subtypes and genes involved with synaptic transmission. The neocortex displays a relatively homogeneous transcriptional pattern, but with distinct features associated selectively with primary sensorimotor cortices and with enriched frontal lobe expression. Notably, the spatial topography of the neocortex is strongly reflected in its molecular topography—the closer two cortical regions, the more similar their transcriptomes. This freely accessible online data resource forms a high-resolution transcriptional baseline for neurogenetic studies of normal and abnormal human brain function.

2,204 citations

Journal ArticleDOI
21 Nov 2012-Neuron
TL;DR: This analysis discloses a remarkable correspondence between the microcircuitry of the cortical column and the connectivity implied by predictive coding and provides some intuitive insights into the functional asymmetries between feedforward and feedback connections and the characteristic frequencies over which they operate.

1,892 citations


Cites background from "Neuronal circuits of the neocortex"

  • ...This section reviews laminar-specific connections that underlie the notion of a canonical microcircuit (Douglas et al., 1989; Douglas and Martin, 1991, 2004)....

    [...]

Journal ArticleDOI
Xiao Jing Wang1
TL;DR: A plethora of studies will be reviewed on the involvement of long-distance neuronal coherence in cognitive functions such as multisensory integration, working memory, and selective attention, and implications of abnormal neural synchronization are discussed as they relate to mental disorders like schizophrenia and autism.
Abstract: Synchronous rhythms represent a core mechanism for sculpting temporal coordination of neural activity in the brain-wide network. This review focuses on oscillations in the cerebral cortex that occur during cognition, in alert behaving conditions. Over the last two decades, experimental and modeling work has made great strides in elucidating the detailed cellular and circuit basis of these rhythms, particularly gamma and theta rhythms. The underlying physiological mechanisms are diverse (ranging from resonance and pacemaker properties of single cells to multiple scenarios for population synchronization and wave propagation), but also exhibit unifying principles. A major conceptual advance was the realization that synaptic inhibition plays a fundamental role in rhythmogenesis, either in an interneuronal network or in a reciprocal excitatory-inhibitory loop. Computational functions of synchronous oscillations in cognition are still a matter of debate among systems neuroscientists, in part because the notion of regular oscillation seems to contradict the common observation that spiking discharges of individual neurons in the cortex are highly stochastic and far from being clocklike. However, recent findings have led to a framework that goes beyond the conventional theory of coupled oscillators and reconciles the apparent dichotomy between irregular single neuron activity and field potential oscillations. From this perspective, a plethora of studies will be reviewed on the involvement of long-distance neuronal coherence in cognitive functions such as multisensory integration, working memory, and selective attention. Finally, implications of abnormal neural synchronization are discussed as they relate to mental disorders like schizophrenia and autism.

1,774 citations


Cites background from "Neuronal circuits of the neocortex"

  • ...However, this does not mean that LFP exclusively reflects afferent inputs from outside of the recorded brain area, because cortical networks are endowed with an abundance of intrinsic connections; therefore, a large fraction of synaptic connections onto a cortical neuron originate within the local circuit (85, 253)....

    [...]

  • ...Feedforward projections from a “lower” cortical area to a “higher” area originate in the superficial layers, whereas the deep layers of the higher area mediate feedback projections to the lower area as well as to subcortical brain structures (50, 253, 352)....

    [...]

References
More filters
Journal ArticleDOI
TL;DR: This method is used to examine receptive fields of a more complex type and to make additional observations on binocular interaction and this approach is necessary in order to understand the behaviour of individual cells, but it fails to deal with the problem of the relationship of one cell to its neighbours.
Abstract: What chiefly distinguishes cerebral cortex from other parts of the central nervous system is the great diversity of its cell types and interconnexions. It would be astonishing if such a structure did not profoundly modify the response patterns of fibres coming into it. In the cat's visual cortex, the receptive field arrangements of single cells suggest that there is indeed a degree of complexity far exceeding anything yet seen at lower levels in the visual system. In a previous paper we described receptive fields of single cortical cells, observing responses to spots of light shone on one or both retinas (Hubel & Wiesel, 1959). In the present work this method is used to examine receptive fields of a more complex type (Part I) and to make additional observations on binocular interaction (Part II). This approach is necessary in order to understand the behaviour of individual cells, but it fails to deal with the problem of the relationship of one cell to its neighbours. In the past, the technique of recording evoked slow waves has been used with great success in studies of functional anatomy. It was employed by Talbot & Marshall (1941) and by Thompson, Woolsey & Talbot (1950) for mapping out the visual cortex in the rabbit, cat, and monkey. Daniel & Whitteiidge (1959) have recently extended this work in the primate. Most of our present knowledge of retinotopic projections, binocular overlap, and the second visual area is based on these investigations. Yet the method of evoked potentials is valuable mainly for detecting behaviour common to large populations of neighbouring cells; it cannot differentiate functionally between areas of cortex smaller than about 1 mm2. To overcome this difficulty a method has in recent years been developed for studying cells separately or in small groups during long micro-electrode penetrations through nervous tissue. Responses are correlated with cell location by reconstructing the electrode tracks from histological material. These techniques have been applied to

12,923 citations


"Neuronal circuits of the neocortex" refers background in this paper

  • ...Obviously, Gilbert & Wiesel’s simplification is not strictly correct: If instead of taking the target neurons to be a point, the full dendritic tree of the target neuron is considered, the spatially separated apical and basal dendrites come into play as extended connecting elements and more elaborate circuits are generated....

    [...]

  • ...Evidence of “patchy” local axonal connections was most clearly seen in reconstructions of individual pyramidal cells filled intracellularly with a label in cat and monkey, or after bulk injections of tracers into the superficial layers in cat (Gilbert & Wiesel 1989, Kisvarday & Eysel 1992, Lowel & Singer 1992); tree shrew (Chisum et al. 2003, Rockland et al. 1982); or monkey somatosensory, motor, and visual areas (Huntley & Jones 1991, Juliano et al. 1990, Levitt et al. A nn u....

    [...]

  • ...163:81–105 Gilbert CD, Wiesel TN. 1983....

    [...]

  • ...58:209–18 Gilbert CD, Wiesel TN. 1989....

    [...]

  • ...The other great simplification offered by the Gilbert & Wiesel circuit is that it inferred only the connections of the spiny, excitatory neurons, thus eliminating at a stroke the complications offered by the different types of smooth neurons....

    [...]

Journal ArticleDOI
TL;DR: A summary of the layout of cortical areas associated with vision and with other modalities, a computerized database for storing and representing large amounts of information on connectivity patterns, and the application of these data to the analysis of hierarchical organization of the cerebral cortex are reported on.
Abstract: In recent years, many new cortical areas have been identified in the macaque monkey. The number of identified connections between areas has increased even more dramatically. We report here on (1) a summary of the layout of cortical areas associated with vision and with other modalities, (2) a computerized database for storing and representing large amounts of information on connectivity patterns, and (3) the application of these data to the analysis of hierarchical organization of the cerebral cortex. Our analysis concentrates on the visual system, which includes 25 neocortical areas that are predominantly or exclusively visual in function, plus an additional 7 areas that we regard as visual-association areas on the basis of their extensive visual inputs. A total of 305 connections among these 32 visual and visual-association areas have been reported. This represents 31% of the possible number of pathways if each area were connected with all others. The actual degree of connectivity is likely to be closer to 40%. The great majority of pathways involve reciprocal connections between areas. There are also extensive connections with cortical areas outside the visual system proper, including the somatosensory cortex, as well as neocortical, transitional, and archicortical regions in the temporal and frontal lobes. In the somatosensory/motor system, there are 62 identified pathways linking 13 cortical areas, suggesting an overall connectivity of about 40%. Based on the laminar patterns of connections between areas, we propose a hierarchy of visual areas and of somatosensory/motor areas that is more comprehensive than those suggested in other recent studies. The current version of the visual hierarchy includes 10 levels of cortical processing. Altogether, it contains 14 levels if one includes the retina and lateral geniculate nucleus at the bottom as well as the entorhinal cortex and hippocampus at the top. Within this hierarchy, there are multiple, intertwined processing streams, which, at a low level, are related to the compartmental organization of areas V1 and V2 and, at a high level, are related to the distinction between processing centers in the temporal and parietal lobes. However, there are some pathways and relationships (about 10% of the total) whose descriptions do not fit cleanly into this hierarchical scheme for one reason or another. In most instances, though, it is unclear whether these represent genuine exceptions to a strict hierarchy rather than inaccuracies or uncertainities in the reported assignment.

7,796 citations

Journal ArticleDOI
TL;DR: A new hierarchical model consistent with physiological data from inferotemporal cortex that accounts for this complex visual task and makes testable predictions is described.
Abstract: Visual processing in cortex is classically modeled as a hierarchy of increasingly sophisticated representations, naturally extending the model of simple to complex cells of Hubel and Wiesel. Surprisingly, little quantitative modeling has been done to explore the biological feasibility of this class of models to explain aspects of higher-level visual processing such as object recognition. We describe a new hierarchical model consistent with physiological data from inferotemporal cortex that accounts for this complex visual task and makes testable predictions. The model is based on a MAX-like operation applied to inputs to certain cortical neurons that may have a general role in cortical function.

3,478 citations

Journal ArticleDOI
01 Jan 1990
TL;DR: It is shown that for many problems, particularly those in which the input data are ill-conditioned and the computation can be specified in a relative manner, biological solutions are many orders of magnitude more effective than those using digital methods.
Abstract: It is shown that for many problems, particularly those in which the input data are ill-conditioned and the computation can be specified in a relative manner, biological solutions are many orders of magnitude more effective than those using digital methods. This advantage can be attributed principally to the use of elementary physical phenomena as computational primitives, and to the representation of information by the relative values of analog signals rather than by the absolute values of digital signals. This approach requires adaptive techniques to mitigate the effects of component differences. This kind of adaptation leads naturally to systems that learn about their environment. Large-scale adaptive analog systems are more robust to component degradation and failure than are more conventional systems, and they use far less power. For this reason, adaptive analog technology can be expected to utilize the full potential of wafer-scale silicon fabrication. >

1,791 citations