New applications of random sampling in computational geometry
TL;DR: This paper gives several new demonstrations of the usefulness of random sampling techniques in computational geometry by creating a search structure for arrangements of hyperplanes by sampling the hyperplanes and using information from the resulting arrangement to divide and conquer.
Abstract: This paper gives several new demonstrations of the usefulness of random sampling techniques in computational geometry. One new algorithm creates a search structure for arrangements of hyperplanes by sampling the hyperplanes and using information from the resulting arrangement to divide and conquer. This algorithm requiresO(sd+?) expected preprocessing time to build a search structure for an arrangement ofs hyperplanes ind dimensions. The expectation, as with all expected times reported here, is with respect to the random behavior of the algorithm, and holds for any input. Given the data structure, and a query pointp, the cell of the arrangement containingp can be found inO(logs) worst-case time. (The bound holds for any fixed ?>0, with the constant factors dependent ond and ?.) Using point-plane duality, the algorithm may be used for answering halfspace range queries. Another algorithm finds random samples of simplices to determine the separation distance of two polytopes. The algorithm uses expectedO(n[d/2]) time, wheren is the total number of vertices of the two polytopes. This matches previous results [10] for the cased = 3 and extends them. Another algorithm samples points in the plane to determine their orderk Voronoi diagram, and requires expectedO(s1+?k) time fors points. (It is assumed that no four of the points are cocircular.) This sharpens the boundO(sk2 logs) for Lee's algorithm [21], andO(s2 logs+k(s?k) log2s) for Chazelle and Edelsbrunner's algorithm [4]. Finally, random sampling is used to show that any set ofs points inE3 hasO(sk2 log8s/(log logs)6) distinctj-sets withj≤k. (ForS ?Ed, a setS? ?S with |S?| =j is aj-set ofS if there is a half-spaceh+ withS? =S ?h+.) This sharpens with respect tok the previous boundO(sk5) [5]. The proof of the bound given here is an instance of a "probabilistic method" [15].
...read more
Citations
3,981 citations
1,138 citations
1,106 citations
Cites methods from "New applications of random sampling..."
...More recently, the Voronoi digram [21] has provided a useful tool in low- dimensional Euclidian settings { and Figure 1: vp-tree decomposition Figure 2: kd-tree decomposition the overall eld and outlook of Computational Geometry has yielded many interesting results such as those of [22, 23, 24, 25] and earlier [26]....
[...]
727 citations
432 citations
References
17,918 citations
6,443 citations
"New applications of random sampling..." refers background in this paper
...(In fact the mapping γ is not unique in this regard: see [13, 23, 2]....
[...]
4,239 citations
3,669 citations
"New applications of random sampling..." refers background in this paper
...Vapnik and Chervonenkis [27] have derived general conditions under which several probabilities may be uniformly estimated using one random sample....
[...]
3,419 citations