scispace - formally typeset
Search or ask a question
Journal ArticleDOI

New Data Systems and Products at the Permanent Service for Mean Sea Level

01 May 2013-Journal of Coastal Research (The Coastal Education and Research Foundation)-Vol. 29, Iss: 3, pp 493-504
TL;DR: Holgate et al. as discussed by the authors reviewed the Permanent Service for Mean Sea Level (PSMSL) and provided global coastal sea level information and products that help to develop our understanding of sea-level and land motion processes.
Abstract: Holgate, S.J.; Matthews, A.; Woodworth, P.L.; Rickards, L.J.; Tamisiea, M.E.; Bradshaw, E.; Foden, P.R.; Gordon, K.M.; Jevrejeva, S., and Pugh, J., 2013. New data systems and products at the Permanent Service for Mean Sea Level. Sea-level rise remains one of the most pressing societal concerns relating to climate change. A significant proportion of the global population, including many of the world's large cities, are located close to the coast in potentially vulnerable regions such as river deltas. The Permanent Service for Mean Sea Level (PSMSL) continues to evolve and provide global coastal sea-level information and products that help to develop our understanding of sea-level and land motion processes. Its work aids a range of scientific research, not only in long-term change, but also in the measurement and understanding of higher frequency variability such as storm surges and tsunamis. The PSMSL has changed considerably over the past 10 years, and the aim of this paper is to update the commu...
Citations
More filters
Journal ArticleDOI
TL;DR: In this article, the authors presented a global set of local sea-level (LSL) projections to inform decisions on timescales ranging from the coming decades through the 22nd century and provided complete probability distributions, informed by a combination of expert community assessment, expert elicitation, and process modeling.
Abstract: Sea-level rise due to both climate change and non-climatic factors threatens coastal settlements, infrastructure, and ecosystems. Projections of mean global sea-level (GSL) rise provide insufficient information to plan adaptive responses; local decisions require local projections that accommodate different risk tolerances and time frames and that can be linked to storm surge projections. Here we present a global set of local sea-level (LSL) projections to inform decisions on timescales ranging from the coming decades through the 22nd century. We provide complete probability distributions, informed by a combination of expert community assessment, expert elicitation, and process modeling. Between the years 2000 and 2100, we project a very likely (90% probability) GSL rise of 0.5–1.2 m under representative concentration pathway (RCP) 8.5, 0.4–0.9 m under RCP 4.5, and 0.3–0.8 m under RCP 2.6. Site-to-site differences in LSL projections are due to varying non-climatic background uplift or subsidence, oceanographic effects, and spatially variable responses of the geoid and the lithosphere to shrinking land ice. The Antarctic ice sheet (AIS) constitutes a growing share of variance in GSL and LSL projections. In the global average and at many locations, it is the dominant source of variance in late 21st century projections, though at some sites oceanographic processes contribute the largest share throughout the century. LSL rise dramatically reshapes flood risk, greatly increasing the expected number of “1-in-10” and “1-in-100” year events.

664 citations

Journal ArticleDOI
22 Jan 2015-Nature
TL;DR: This analysis, which combines tide gauge records with physics-based and model-derived geometries of the various contributing signals, indicates that GMSL rose at a rate of 3.0 ± 0.7 millimetres per year between 1993 and 2010, consistent with prior estimates from tide gauging records.
Abstract: Estimating and accounting for twentieth-century global mean sea level (GMSL) rise is critical to characterizing current and future human-induced sea-level change. Several previous analyses of tide gauge records--employing different methods to accommodate the spatial sparsity and temporal incompleteness of the data and to constrain the geometry of long-term sea-level change--have concluded that GMSL rose over the twentieth century at a mean rate of 1.6 to 1.9 millimetres per year. Efforts to account for this rate by summing estimates of individual contributions from glacier and ice-sheet mass loss, ocean thermal expansion, and changes in land water storage fall significantly short in the period before 1990. The failure to close the budget of GMSL during this period has led to suggestions that several contributions may have been systematically underestimated. However, the extent to which the limitations of tide gauge analyses have affected estimates of the GMSL rate of change is unclear. Here we revisit estimates of twentieth-century GMSL rise using probabilistic techniques and find a rate of GMSL rise from 1901 to 1990 of 1.2 ± 0.2 millimetres per year (90% confidence interval). Based on individual contributions tabulated in the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, this estimate closes the twentieth-century sea-level budget. Our analysis, which combines tide gauge records with physics-based and model-derived geometries of the various contributing signals, also indicates that GMSL rose at a rate of 3.0 ± 0.7 millimetres per year between 1993 and 2010, consistent with prior estimates from tide gauge records.The increase in rate relative to the 1901-90 trend is accordingly larger than previously thought; this revision may affect some projections of future sea-level rise.

474 citations

01 Jan 2014
TL;DR: This article presented a global set of local sea-level (LSL) projections to inform decisions on timescales ranging from the com- ing decades through the 22nd century, and provided complete probability distributions, informed by a combination of expert community assessment, expert elicitation, and process modeling.
Abstract: Sea-level rise due to both climate change and non-climatic factors threatens coastal settle- ments, infrastructure, and ecosystems. Projections of mean global sea-level (GSL) rise provide insufficient information to plan adaptive responses; local decisions require local projections that accommodate dif- ferent risk tolerances and time frames and that can be linked to storm surge projections. Here we present a global set of local sea-level (LSL) projections to inform decisions on timescales ranging from the com- ing decades through the 22nd century. We provide complete probability distributions, informed by a combination of expert community assessment, expert elicitation, and process modeling. Between the years 2000 and 2100, we project a very likely (90% probability) GSL rise of 0.5-1.2 m under representa- tive concentration pathway (RCP) 8.5, 0.4-0.9 m under RCP 4.5, and 0.3-0.8 m under RCP 2.6. Site-to-site differences in LSL projections are due to varying non-climatic background uplift or subsidence, oceano- graphic effects, and spatially variable responses of the geoid and the lithosphere to shrinking land ice. The Antarctic ice sheet (AIS) constitutes a growing share of variance in GSL and LSL projections. In the global average and at many locations, it is the dominant source of variance in late 21st century projections, though at some sites oceanographic processes contribute the largest share throughout the century. LSL rise dramatically reshapes flood risk, greatly increasing the expected number of "1-in-10" and "1-in-100" year events.

471 citations

Journal ArticleDOI
TL;DR: In this article, the authors focus on the enhancements to the gridded SLA products over the global ocean, and an extensive assessment exercise has been carried out on this data set, which allows them to establish a consolidated error budget.
Abstract: . The new DUACS DT2014 reprocessed products have been available since April 2014. Numerous innovative changes have been introduced at each step of an extensively revised data processing protocol. The use of a new 20-year altimeter reference period in place of the previous 7-year reference significantly changes the sea level anomaly (SLA) patterns and thus has a strong user impact. The use of up-to-date altimeter standards and geophysical corrections, reduced smoothing of the along-track data, and refined mapping parameters, including spatial and temporal correlation-scale refinement and measurement errors, all contribute to an improved high-quality DT2014 SLA data set. Although all of the DUACS products have been upgraded, this paper focuses on the enhancements to the gridded SLA products over the global ocean. As part of this exercise, 21 years of data have been homogenized, allowing us to retrieve accurate large-scale climate signals such as global and regional MSL trends, interannual signals, and better refined mesoscale features. An extensive assessment exercise has been carried out on this data set, which allows us to establish a consolidated error budget. The errors at mesoscale are about 1.4 cm2 in low-variability areas, increase to an average of 8.9 cm2 in coastal regions, and reach nearly 32.5 cm2 in high mesoscale activity areas. The DT2014 products, compared to the previous DT2010 version, retain signals for wavelengths lower than ∼ 250 km, inducing SLA variance and mean EKE increases of, respectively, +5.1 and +15 %. Comparisons with independent measurements highlight the improved mesoscale representation within this new data set. The error reduction at the mesoscale reaches nearly 10 % of the error observed with DT2010. DT2014 also presents an improved coastal signal with a nearly 2 to 4 % mean error reduction. High-latitude areas are also more accurately represented in DT2014, with an improved consistency between spatial coverage and sea ice edge position. An error budget is used to highlight the limitations of the new gridded products, with notable errors in areas with strong internal tides.

379 citations

Journal ArticleDOI
TL;DR: This is the first, to the authors' knowledge, estimate of global sea-level (GSL) change over the last ∼3,000 years that is based upon statistical synthesis of a global database of regional sea- level reconstructions, and indicates that, without global warming, GSL in the 20th century very likely would have risen by between −3 cm and +7 cm, rather than the ∼14 cm observed.
Abstract: We assess the relationship between temperature and global sea-level (GSL) variability over the Common Era through a statistical metaanalysis of proxy relative sea-level reconstructions and tide-gauge data. GSL rose at 0.1 ± 0.1 mm/y (2σ) over 0-700 CE. A GSL fall of 0.2 ± 0.2 mm/y over 1000-1400 CE is associated with ∼ 0.2 °C global mean cooling. A significant GSL acceleration began in the 19th century and yielded a 20th century rise that is extremely likely (probability [Formula: see text]) faster than during any of the previous 27 centuries. A semiempirical model calibrated against the GSL reconstruction indicates that, in the absence of anthropogenic climate change, it is extremely likely ([Formula: see text]) that 20th century GSL would have risen by less than 51% of the observed [Formula: see text] cm. The new semiempirical model largely reconciles previous differences between semiempirical 21st century GSL projections and the process model-based projections summarized in the Intergovernmental Panel on Climate Change's Fifth Assessment Report.

372 citations


Cites methods from "New Data Systems and Products at th..."

  • ...This timescale was set based on the mean temporal correlation coefficient across all tide gauges using the annual PSMSL data, which approaches zero after 2 y. Spatiotemporal Statistical Analysis....

    [...]

  • ...Tide gauge records were drawn from the Permanent Service for Mean Sea Level (PSMSL) (93, 94)....

    [...]

  • ...We complement these with multicentury records from Amsterdam (1700–1925 CE) (11), Kronstadt (1773–1993 CE) (95), and Stockholm (1774– 2000 CE) (96), as compiled by PSMSL. Annual tide-gauge data were smoothed by fitting a temporal GP model to each record and then transforming the fitted model to decadal averages, both for computational efficiency and because the decadal averages more accurately reflect the recording capabilities of proxy records....

    [...]

  • ...Permanent Service for Mean Sea Level (PSMSL) (2014) Tide gauge data....

    [...]

References
More filters
01 Jan 2007
TL;DR: The first volume of the IPCC's Fourth Assessment Report as mentioned in this paper was published in 2007 and covers several topics including the extensive range of observations now available for the atmosphere and surface, changes in sea level, assesses the paleoclimatic perspective, climate change causes both natural and anthropogenic, and climate models for projections of global climate.
Abstract: This report is the first volume of the IPCC's Fourth Assessment Report. It covers several topics including the extensive range of observations now available for the atmosphere and surface, changes in sea level, assesses the paleoclimatic perspective, climate change causes both natural and anthropogenic, and climate models for projections of global climate.

32,826 citations

Journal ArticleDOI
David John Griggs1, M. Noguer1
01 Aug 2002-Weather
TL;DR: The terms of reference of the Intergovernmental Panel on Climate Change (IPCC) as discussed by the authors were defined by the World Meteorological Organization (WMO) and the United Nations Environmental Programme (UNEP).
Abstract: The earth’s climate system has demonstrably changed since the pre-industrial era, with some of these changes attributable to human activities. The consequences of climate change pose a serious challenge to policy-makers. Hence they need an objective source of information about climate change, its impacts and possible response options. Recognising this, the World Meteorological Organization (WMO) and the United Nations Environmental Programme jointly established the Intergovernmental Panel on Climate Change (IPCC) in 1988. The terms of reference of the IPCC include:

4,758 citations

Journal ArticleDOI
TL;DR: The impact of the changing surface ice load upon both Earth's shape and gravitational field, as well as upon sea-level history, have come to be measurable using a variety of geological and geophysical techniques.
Abstract: ▪ Abstract The 100 kyr quasiperiodic variation of continental ice cover, which has been a persistent feature of climate system evolution throughout the most recent 900 kyr of Earth history, has occurred as a consequence of changes in the seasonal insolation regime forced by the influence of gravitational n-body effects in the Solar System on the geometry of Earth's orbit around the Sun. The impacts of the changing surface ice load upon both Earth's shape and gravitational field, as well as upon sea-level history, have come to be measurable using a variety of geological and geophysical techniques. These observations are invertible to obtain useful information on both the internal viscoelastic structure of the solid Earth and on the detailed spatiotemporal characteristics of glaciation history. This review focuses upon the most recent advances that have been achieved in each of these areas, advances that have proven to be central to the construction of the refined model of the global process of glacial isos...

2,333 citations

Journal ArticleDOI
TL;DR: In this article, the authors extend the reconstruction of global mean sea level back to 1870 and find a sea level rise from January 1870 to December 2004 of 195 mm, a 20th century rate of sea-level rise of 1.7 ± 0.3 mm yr−1 and a significant acceleration of sealevel rise from 0.013 − 0.006 mm yr −2.
Abstract: [1] Multi-century sea-level records and climate models indicate an acceleration of sea-level rise, but no 20th century acceleration has previously been detected. A reconstruction of global sea level using tide-gauge data from 1950 to 2000 indicates a larger rate of rise after 1993 and other periods of rapid sea-level rise but no significant acceleration over this period. Here, we extend the reconstruction of global mean sea level back to 1870 and find a sea-level rise from January 1870 to December 2004 of 195 mm, a 20th century rate of sea-level rise of 1.7 ± 0.3 mm yr−1 and a significant acceleration of sea-level rise of 0.013 ± 0.006 mm yr−2. This acceleration is an important confirmation of climate change simulations which show an acceleration not previously observed. If this acceleration remained constant then the 1990 to 2100 rise would range from 280 to 340 mm, consistent with projections in the IPCC TAR.

1,327 citations


"New Data Systems and Products at th..." refers result in this paper

  • ...As has been noted by a number of authors (Church and White, 2006; Douglas, 1991, 1997; Holgate and Woodworth, 2004; Jevrejeva et al., 2006; Woodworth, 1991; Woodworth and Player, 2003) the distribution of these stations in time is far from even....

    [...]