scispace - formally typeset
Search or ask a question
Journal ArticleDOI

New Insights Into the Intricacies of Proneural Gene Regulation in the Embryonic and Adult Cerebral Cortex

15 Feb 2021-Frontiers in Molecular Neuroscience (Front Mol Neurosci)-Vol. 14, pp 642016-642016
TL;DR: In this article, a review of the regulatory properties of proneural genes encoding basic-helix-loophelix (bHLH) transcription factors (TFs) is presented, focusing on the murine cerebral cortex.
Abstract: Historically, the mammalian brain was thought to lack stem cells as no new neurons were found to be made in adulthood. That dogma changed ∼25 years ago with the identification of neural stem cells (NSCs) in the adult rodent forebrain. However, unlike rapidly self-renewing mature tissues (e.g., blood, intestinal crypts, skin), the majority of adult NSCs are quiescent, and those that become 'activated' are restricted to a few neurogenic zones that repopulate specific brain regions. Conversely, embryonic NSCs are actively proliferating and neurogenic. Investigations into the molecular control of the quiescence-to-proliferation-to-differentiation continuum in the embryonic and adult brain have identified proneural genes encoding basic-helix-loop-helix (bHLH) transcription factors (TFs) as critical regulators. These bHLH TFs initiate genetic programs that remove NSCs from quiescence and drive daughter neural progenitor cells (NPCs) to differentiate into specific neural cell subtypes, thereby contributing to the enormous cellular diversity of the adult brain. However, new insights have revealed that proneural gene activities are context-dependent and tightly regulated. Here we review how proneural bHLH TFs are regulated, with a focus on the murine cerebral cortex, drawing parallels where appropriate to other organisms and neural tissues. We discuss upstream regulatory events, post-translational modifications (phosphorylation, ubiquitinylation), protein-protein interactions, epigenetic and metabolic mechanisms that govern bHLH TF expression, stability, localization, and consequent transactivation of downstream target genes. These tight regulatory controls help to explain paradoxical findings of changes to bHLH activity in different cellular contexts.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: The Neurod family has four members: Neurod1, Neurod2 and Neurod4 as discussed by the authors, which are important in the development and function of the central nervous system.
Abstract: Transcriptional regulation is essential for the correct functioning of cells during development and in postnatal life. The basic Helix-loop-Helix (bHLH) superfamily of transcription factors is well conserved throughout evolution and plays critical roles in tissue development and tissue maintenance. A subgroup of this family, called neural lineage bHLH factors, is critical in the development and function of the central nervous system. In this review, we will focus on the function of one subgroup of neural lineage bHLH factors, the Neurod family. The Neurod family has four members: Neurod1, Neurod2, Neurod4, and Neurod6. Available evidence shows that these four factors are key during the development of the cerebral cortex but also in other regions of the central nervous system, such as the cerebellum, the brainstem, and the spinal cord. We will also discuss recent reports that link the dysfunction of these transcription factors to neurological disorders in humans.

46 citations

Journal ArticleDOI
TL;DR: Direct neuronal reprogramming is an innovative new technology that involves the conversion of somatic cells to induced neurons (iNs) without passing through a pluripotent state as discussed by the authors, which has opened the door for the potential treatment of incurable neurodegenerative diseases and brain injuries such as stroke.
Abstract: Direct neuronal reprogramming is an innovative new technology that involves the conversion of somatic cells to induced neurons (iNs) without passing through a pluripotent state. The capacity to make new neurons in the brain, which previously was not achievable, has created great excitement in the field as it has opened the door for the potential treatment of incurable neurodegenerative diseases and brain injuries such as stroke. These neurological disorders are associated with frank neuronal loss, and as new neurons are not made in most of the adult brain, treatment options are limited. Developmental biologists have paved the way for the field of direct neuronal reprogramming by identifying both intrinsic cues, primarily transcription factors (TFs) and miRNAs, and extrinsic cues, including growth factors and other signaling molecules, that induce neurogenesis and specify neuronal subtype identities in the embryonic brain. The striking observation that postmitotic, terminally differentiated somatic cells can be converted to iNs by mis-expression of TFs or miRNAs involved in neural lineage development, and/or by exposure to growth factors or small molecule cocktails that recapitulate the signaling environment of the developing brain, has opened the door to the rapid expansion of new neuronal reprogramming methodologies. Furthermore, the more recent applications of neuronal lineage conversion strategies that target resident glial cells in situ has expanded the clinical potential of direct neuronal reprogramming techniques. Herein, we present an overview of the history, accomplishments, and therapeutic potential of direct neuronal reprogramming as revealed over the last two decades.

16 citations

Journal ArticleDOI
TL;DR: In this article , the authors provide a review on common traits emerging on the transcriptional regulation of neuron type diversification with a special focus on the comparison between mouse and Caenorhabditis elegans model systems.
Abstract: Neuronal diversity is an intrinsic feature of the nervous system. Transcription factors (TFs) are key regulators in the establishment of different neuronal identities; how are the actions of different TFs coordinated to orchestrate this diversity? Are there common features shared among the different neuron types of an organism or even among different animal groups? In this review, we provide a brief overview on common traits emerging on the transcriptional regulation of neuron type diversification with a special focus on the comparison between mouse and Caenorhabditis elegans model systems. In the first part, we describe general concepts on neuronal identity and transcriptional regulation of gene expression. In the second part of the review, TFs are classified in different categories according to their key roles at specific steps along the protracted process of neuronal specification and differentiation. The same TF categories can be identified both in mammals and nematodes. Importantly, TFs are very pleiotropic: Depending on the neuron type or the time in development, the same TF can fulfil functions belonging to different categories. Finally, we describe the key role of transcriptional repression at all steps controlling neuronal diversity and propose that acquisition of neuronal identities could be considered a metastable process.

5 citations

Journal ArticleDOI
TL;DR: The importance of RBP functions at multiple time-restricted steps of early neurogenesis, starting from the cell fate transition of transcriptionally primed cortical progenitors is underscored.
Abstract: The human neocortex is undoubtedly considered a supreme accomplishment in mammalian evolution. It features a prenatally established six-layered structure which remains plastic to the myriad of changes throughout an organism’s lifetime. A fundamental feature of neocortical evolution and development is the abundance and diversity of the progenitor cell population and their neuronal and glial progeny. These evolutionary upgrades are partially enabled due to the progenitors’ higher proliferative capacity, compartmentalization of proliferative regions, and specification of neuronal temporal identities. The driving force of these processes may be explained by temporal molecular patterning, by which progenitors have intrinsic capacity to change their competence as neocortical neurogenesis proceeds. Thus, neurogenesis can be conceptualized along two timescales of progenitors’ capacity to (1) self-renew or differentiate into basal progenitors (BPs) or neurons or (2) specify their fate into distinct neuronal and glial subtypes which participate in the formation of six-layers. Neocortical development then proceeds through sequential phases of proliferation, differentiation, neuronal migration, and maturation. Temporal molecular patterning, therefore, relies on the precise regulation of spatiotemporal gene expression. An extensive transcriptional regulatory network is accompanied by post-transcriptional regulation that is frequently mediated by the regulatory interplay between RNA-binding proteins (RBPs). RBPs exhibit important roles in every step of mRNA life cycle in any system, from splicing, polyadenylation, editing, transport, stability, localization, to translation (protein synthesis). Here, we underscore the importance of RBP functions at multiple time-restricted steps of early neurogenesis, starting from the cell fate transition of transcriptionally primed cortical progenitors. A particular emphasis will be placed on RBPs with mostly conserved but also divergent evolutionary functions in neural progenitors across different species. RBPs, when considered in the context of the fascinating process of neocortical development, deserve to be main protagonists in the story of the evolution and development of the neocortex.

3 citations

References
More filters
Journal ArticleDOI
TL;DR: A single cell clonal line which responds reversibly to nerve growth factor (NGF) has been established from a transplantable rat adrenal pheochromocytoma and should be a useful model system for neurobiological and neurochemical studies.
Abstract: A single cell clonal line which responds reversibly to nerve growth factor (NGF) has been established from a transplantable rat adrenal pheochromocytoma. This line, designated PC12, has a homogeneous and near-diploid chromosome number of 40. By 1 week's exposure to NGF, PC12 cells cease to multiply and begin to extend branching varicose processes similar to those produced by sympathetic neurons in primary cell culture. By several weeks of exposure to NGF, the PC12 processes reach 500-1000 mum in length. Removal of NGF is followed by degeneration of processes within 24 hr and by resumption of cell multiplication within 72 hr. PC12 cells grown with or without NGF contain dense core chromaffin-like granules up to 350 nm in diameter. The NGF-treated cells also contain small vesicles which accumulate in process varicosities and endings. PC12 cells synthesize and store the catecholamine neurotransmitters dopamine and norepinephrine. The levels (per mg of protein) of catecholamines and of the their synthetic enzymes in PC12 cells are comparable to or higher than those found in rat adrenals. NGF-treatment of PC12 cells results in no change in the levels of catecholamines or of their synthetic enzymes when expressed on a per cell basis, but does result in a 4- to 6-fold decrease in levels when expressed on a per mg of protein basis. PC12 cells do not synthesize epinephrine and cannot be induced to do so by treatment with dexamethasone. The PC12 cell line should be a useful model system for neurobiological and neurochemical studies.

5,409 citations

Journal ArticleDOI
21 Apr 2006-Cell
TL;DR: It is proposed that bivalent domains silence developmental genes in ES cells while keeping them poised for activation, highlighting the importance of DNA sequence in defining the initial epigenetic landscape and suggesting a novel chromatin-based mechanism for maintaining pluripotency.

5,131 citations

Journal ArticleDOI
27 Jan 1995-Cell
TL;DR: Experiments with PC12 cells suggest that the duration of ERK activation is critical for cell signaling decisions, and the extracellular signal-regulated kinase (ERK-regulated) MAPK pathway may be sufficient for these cellular responses.

4,628 citations

Journal ArticleDOI
TL;DR: The structure, assembly, and function of the posttranslational modification with ubiquitin, a process referred to as ubiquitylation, controls almost every process in cells.
Abstract: The posttranslational modification with ubiquitin, a process referred to as ubiquitylation, controls almost every process in cells. Ubiquitin can be attached to substrate proteins as a single moiety or in the form of polymeric chains in which successive ubiquitin molecules are connected through specific isopeptide bonds. Reminiscent of a code, the various ubiquitin modifications adopt distinct conformations and lead to different outcomes in cells. Here, we discuss the structure, assembly, and function of this ubiquitin code.

2,762 citations

Journal ArticleDOI
25 Feb 2010-Nature
TL;DR: In this paper, a combination of three transcription factors, Ascl1, Brn2 (also called Pou3f2) and Myt1l, was used to convert mouse embryonic and postnatal fibroblasts into functional neurons in vitro.
Abstract: Cellular differentiation and lineage commitment are considered to be robust and irreversible processes during development. Recent work has shown that mouse and human fibroblasts can be reprogrammed to a pluripotent state with a combination of four transcription factors. This raised the question of whether transcription factors could directly induce other defined somatic cell fates, and not only an undifferentiated state. We hypothesized that combinatorial expression of neural-lineage-specific transcription factors could directly convert fibroblasts into neurons. Starting from a pool of nineteen candidate genes, we identified a combination of only three factors, Ascl1, Brn2 (also called Pou3f2) and Myt1l, that suffice to rapidly and efficiently convert mouse embryonic and postnatal fibroblasts into functional neurons in vitro. These induced neuronal (iN) cells express multiple neuron-specific proteins, generate action potentials and form functional synapses. Generation of iN cells from non-neural lineages could have important implications for studies of neural development, neurological disease modelling and regenerative medicine.

2,730 citations