scispace - formally typeset
Journal ArticleDOI

New insights into the structure and reduction of graphite oxide

Wei Gao, +3 more
- 01 Aug 2009 - 
- Vol. 1, Iss: 5, pp 403-408
Reads0
Chats0
TLDR
This work has devised a complete reduction process through chemical conversion by sodium borohydride and sulfuric acid treatment, followed by thermal annealing that is particularly effective in the restoration of the π-conjugated structure, and leads to highly soluble and conductive graphene materials.
Abstract
Graphite oxide is one of the main precursors of graphene-based materials, which are highly promising for various technological applications because of their unusual electronic properties Although epoxy and hydroxyl groups are widely accepted as its main functionalities, the complete structure of graphite oxide has remained elusive By interpreting spectroscopic data in the context of the major functional groups believed to be present in graphite oxide, we now show evidence for the presence of five- and six-membered-ring lactols On the basis of this chemical composition, we devised a complete reduction process through chemical conversion by sodium borohydride and sulfuric acid treatment, followed by thermal annealing Only small amounts of impurities are present in the final product (less than 05 wt% of sulfur and nitrogen, compared with about 3 wt% with other chemical reductions) This method is particularly effective in the restoration of the π-conjugated structure, and leads to highly soluble and conductive graphene materials

read more

Citations
More filters
Journal ArticleDOI

The chemistry of graphene oxide

TL;DR: This review will be of value to synthetic chemists interested in this emerging field of materials science, as well as those investigating applications of graphene who would find a more thorough treatment of the chemistry of graphene oxide useful in understanding the scope and limitations of current approaches which utilize this material.
Journal ArticleDOI

Improved Synthesis of Graphene Oxide

TL;DR: An improved method for the preparation of graphene oxide (GO) is described, finding that excluding the NaNO(3), increasing the amount of KMnO(4), and performing the reaction in a 9:1 mixture of H(2)SO(4)/H(3)PO(4) improves the efficiency of the oxidation process.
Journal ArticleDOI

Graphene and Graphene Oxide: Synthesis, Properties, and Applications

TL;DR: An overview of the synthesis, properties, and applications of graphene and related materials (primarily, graphite oxide and its colloidal suspensions and materials made from them), from a materials science perspective.
Journal ArticleDOI

The reduction of graphene oxide

TL;DR: In this paper, the state-of-the-art status of the reduction of GO on both techniques and mechanisms is reviewed, where the reduction process can partially restore the structure and properties of graphene.
Journal ArticleDOI

Graphene-based composites

TL;DR: A critical review of the synthesis methods for graphene and its derivatives as well as their properties and the advantages of graphene-based composites in applications such as the Li-ion batteries, supercapacitors, fuel cells, photovoltaic devices, photocatalysis, and Raman enhancement are described.
References
More filters
Journal ArticleDOI

Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide

TL;DR: In this paper, a colloidal suspension of exfoliated graphene oxide sheets in water with hydrazine hydrate results in their aggregation and subsequent formation of a high surface area carbon material which consists of thin graphene-based sheets.
Journal ArticleDOI

Processable aqueous dispersions of graphene nanosheets

TL;DR: It is reported that chemically converted graphene sheets obtained from graphite can readily form stable aqueous colloids through electrostatic stabilization, making it possible to process graphene materials using low-cost solution processing techniques, opening up enormous opportunities to use this unique carbon nanostructure for many technological applications.
Journal ArticleDOI

Functionalized Single Graphene Sheets Derived from Splitting Graphite Oxide

TL;DR: The process yields a wrinkled sheet structure resulting from reaction sites involved in oxidation and reduction processes, and functionalized graphene produced by this method is electrically conducting.
Related Papers (5)