scispace - formally typeset
Search or ask a question
Journal ArticleDOI

New Magnetic Anisotropy

01 Jun 1956-Physical Review (American Physical Society)-Vol. 105, Iss: 3, pp 904-913
TL;DR: In this article, a new type of magnetic anisotropy was discovered which is best described as an exchange anisotropic, which is the result of an interaction between an antiferromagnetic material and a ferromagnetic materials.
Abstract: A new type of magnetic anisotropy has been discovered which is best described as an exchange anisotropy. This anisotropy is the result of an interaction between an antiferromagnetic material and a ferromagnetic material. The material that exhibits this exchange anisotropy is a compact of fine particles of cobalt with a cobaltous oxide shell. The effect occurs only below the N\'eel temperature of the antiferromagnetic material, which is essentially room temperature for the cobaltous oxide. An exchange torque is inferred to exist between the metal and oxide which has a maximum value at 77\ifmmode^\circ\else\textdegree\fi{}K of \ensuremath{\sim}2 dyne-cm/${\mathrm{cm}}^{2}$ of interface.
Citations
More filters
Journal ArticleDOI
TL;DR: In this article, permanent magnets can be made of composite materials consisting of two suitably dispersed ferromagnetic and mutually exchange-coupled phases, one of which is hard magnetic in order to provide a high coercive field, while the other may be soft magnetic, just providing a high saturation J/sub s/, and should envelop the hard phase regions to prevent their corrosion.
Abstract: It is proposed that permanent magnets can be made of composite materials consisting of two suitably dispersed ferromagnetic and mutually exchange-coupled phases, one of which is hard magnetic in order to provide a high coercive field, while the other may be soft magnetic, just providing a high saturation J/sub s/, and should envelop the hard phase regions in order to prevent their corrosion. A general theoretical treatment of such systems shows that one may expect, besides a high energy product (BH)/sub max/, a reversible demagnetization curve (exchange-spring) and, in certain cases, an unusually high isotropic remanence ratio B/sub r//J/sub s/, while the required volume fraction of the hard phase may be very low, on the order of 10%. The technological realization of such materials is shown to be based on the principle that all phases involved must emerge from a common metastable matrix phase in order to be crystallographically coherent and consequently magnetically exchange coupled. >

2,283 citations

Journal ArticleDOI
TL;DR: The authors are starting to see a new paradigm where magnetization dynamics and charge currents act on each other in nanostructured artificial materials, allowing faster, low-energy operations: spin electronics is on its way.
Abstract: Electrons have a charge and a spin, but until recently these were considered separately. In classical electronics, charges are moved by electric fields to transmit information and are stored in a capacitor to save it. In magnetic recording, magnetic fields have been used to read or write the information stored on the magnetization, which 'measures' the local orientation of spins in ferromagnets. The picture started to change in 1988, when the discovery of giant magnetoresistance opened the way to efficient control of charge transport through magnetization. The recent expansion of hard-disk recording owes much to this development. We are starting to see a new paradigm where magnetization dynamics and charge currents act on each other in nanostructured artificial materials. Ultimately, 'spin currents' could even replace charge currents for the transfer and treatment of information, allowing faster, low-energy operations: spin electronics is on its way.

2,191 citations

Journal ArticleDOI
TL;DR: The phenomenology of exchange bias and related effects in nanostructures is reviewed in this paper, where the main applications of exchange biased nanostructure are summarized and the implications of the nanometer dimensions on some of the existing exchange bias theories are briefly discussed.

1,721 citations

Journal ArticleDOI
TL;DR: In this paper, a classification of nanostructure morphology according to the mechanism responsible for the magnetic properties is presented, followed by a brief discussion of some promising experimental techniques in synthesis and measurements.
Abstract: Understanding the correlation between magnetic properties and nanostructure involves collaborative efforts between chemists, physicists, and materials scientists to study both fundamental properties and potential applications. This article introduces a classification of nanostructure morphology according to the mechanism responsible for the magnetic properties. The fundamental magnetic properties of interest and the theoretical frameworks developed to model these properties are summarized. Common chemical and physical techniques for the fabrication of magnetic nanostructures are surveyed, followed by some examples of recent investigations of magnetic systems with structure on the nanometer scale. The article concludes with a brief discussion of some promising experimental techniques in synthesis and measurements.

1,522 citations

Journal ArticleDOI
19 Jun 2003-Nature
TL;DR: It is shown that magnetic exchange coupling induced at the interface between ferromagnetic and antiferromagnetic systems can provide an extra source of anisotropy, leading to magnetization stability.
Abstract: Interest in magnetic nanoparticles has increased in the past few years by virtue of their potential for applications in fields such as ultrahigh-density recording and medicine. Most applications rely on the magnetic order of the nanoparticles being stable with time. However, with decreasing particle size the magnetic anisotropy energy per particle responsible for holding the magnetic moment along certain directions becomes comparable to the thermal energy. When this happens, the thermal fluctuations induce random flipping of the magnetic moment with time, and the nanoparticles lose their stable magnetic order and become superparamagnetic. Thus, the demand for further miniaturization comes into conflict with the superparamagnetism caused by the reduction of the anisotropy energy per particle: this constitutes the so-called 'superparamagnetic limit' in recording media. Here we show that magnetic exchange coupling induced at the interface between ferromagnetic and antiferromagnetic systems can provide an extra source of anisotropy, leading to magnetization stability. We demonstrate this principle for ferromagnetic cobalt nanoparticles of about 4 nm in diameter that are embedded in either a paramagnetic or an antiferromagnetic matrix. Whereas the cobalt cores lose their magnetic moment at 10 K in the first system, they remain ferromagnetic up to about 290 K in the second. This behaviour is ascribed to the specific way ferromagnetic nanoparticles couple to an antiferromagnetic matrix.

1,459 citations