scispace - formally typeset
Search or ask a question
Journal ArticleDOI

New Method for Calculating Wave Functions in Crystals and Molecules

15 Oct 1959-Physical Review (American Physical Society)-Vol. 116, Iss: 2, pp 287-294
TL;DR: In this article, it is shown that advantage of crystal symmetry can be taken to construct wave functions which are best described as the smooth part of symmetrized Bloch functions.
Abstract: For metals and semiconductors the calculation of crystal wave functions is simplest in a plane wave representation. However, in order to obtain rapid convergence it is necessary that the valence electron wave functions be made orthogonal to the core wave functions. Herring satisfied this requirement by choosing as basis functions "orthogonalized plane waves." It is here shown that advantage can be taken of crystal symmetry to construct wave functions ${\ensuremath{\phi}}_{\ensuremath{\alpha}}$ which are best described as the smooth part of symmetrized Bloch functions. The wave equation satisfied by ${\ensuremath{\phi}}_{\ensuremath{\alpha}}$ contains an additional term of simple character which corresponds to the usual complicated orthogonalization terms and has a simple physical interpretation as an effective repulsive potential. Qualitative estimates of this potential in analytic form are presented. Several examples are worked out which display the cancellation between attractive and repulsive potentials in the core region which is responsible for rapid convergence of orthogonalized plane wave calculations for $s$ states; the slower convergence of $p$ states is also explained. The formalism developed here can also be regarded as a rigorous formulation of the "empirical potential" approach within the one-electron framework; the present results are compared with previous approaches. The method can be applied equally well to the calculation of wave functions in molecules.
Citations
More filters
Journal ArticleDOI
TL;DR: In this article, the authors present a comprehensive, up-to-date compilation of band parameters for the technologically important III-V zinc blende and wurtzite compound semiconductors.
Abstract: We present a comprehensive, up-to-date compilation of band parameters for the technologically important III–V zinc blende and wurtzite compound semiconductors: GaAs, GaSb, GaP, GaN, AlAs, AlSb, AlP, AlN, InAs, InSb, InP, and InN, along with their ternary and quaternary alloys. Based on a review of the existing literature, complete and consistent parameter sets are given for all materials. Emphasizing the quantities required for band structure calculations, we tabulate the direct and indirect energy gaps, spin-orbit, and crystal-field splittings, alloy bowing parameters, effective masses for electrons, heavy, light, and split-off holes, Luttinger parameters, interband momentum matrix elements, and deformation potentials, including temperature and alloy-composition dependences where available. Heterostructure band offsets are also given, on an absolute scale that allows any material to be aligned relative to any other.

6,349 citations

Journal ArticleDOI
TL;DR: An overview of NWChem is provided focusing primarily on the core theoretical modules provided by the code and their parallel performance, as well as Scalable parallel implementations and modular software design enable efficient utilization of current computational architectures.

4,666 citations

Journal ArticleDOI
W. L. McMillan1
TL;DR: In this paper, the superconducting transition temperature is calculated as a function of the electron-phonon and electron-electron coupling constants within the framework of strong coupling theory.
Abstract: The superconducting transition temperature is calculated as a function of the electron-phonon and electron-electron coupling constants within the framework of the strong-coupling theory. Using this theoretical result, we find empirical values of the coupling constants and the "band-structure" density of states for a number of metals and alloys. It is noted that the electron-phonon coupling constant depends primarily on the phonon frequencies rather than on the electronic properties of the metal. Finally, using these results, one can predict a maximum superconducting transition temperature.

3,895 citations

Book
01 Jan 2004
TL;DR: In this paper, the Kohn-Sham ansatz is used to solve the problem of determining the electronic structure of atoms, and the three basic methods for determining electronic structure are presented.
Abstract: Preface Acknowledgements Notation Part I. Overview and Background Topics: 1. Introduction 2. Overview 3. Theoretical background 4. Periodic solids and electron bands 5. Uniform electron gas and simple metals Part II. Density Functional Theory: 6. Density functional theory: foundations 7. The Kohn-Sham ansatz 8. Functionals for exchange and correlation 9. Solving the Kohn-Sham equations Part III. Important Preliminaries on Atoms: 10. Electronic structure of atoms 11. Pseudopotentials Part IV. Determination of Electronic Structure, The Three Basic Methods: 12. Plane waves and grids: basics 13. Plane waves and grids: full calculations 14. Localized orbitals: tight binding 15. Localized orbitals: full calculations 16. Augmented functions: APW, KKR, MTO 17. Augmented functions: linear methods Part V. Predicting Properties of Matter from Electronic Structure - Recent Developments: 18. Quantum molecular dynamics (QMD) 19. Response functions: photons, magnons ... 20. Excitation spectra and optical properties 21. Wannier functions 22. Polarization, localization and Berry's phases 23. Locality and linear scaling O (N) methods 24. Where to find more Appendixes References Index.

2,690 citations

Journal ArticleDOI
TL;DR: The Basis Set Exchange (BSE) is described, a Web portal that provides advanced browsing and download capabilities, facilities for contributing basis set data, and an environment that incorporates tools to foster development and interaction of communities.
Abstract: Basis sets are some of the most important input data for computational models in the chemistry, materials, biology, and other science domains that utilize computational quantum mechanics methods. Providing a shared, Web-accessible environment where researchers can not only download basis sets in their required format but browse the data, contribute new basis sets, and ultimately curate and manage the data as a community will facilitate growth of this resource and encourage sharing both data and knowledge. We describe the Basis Set Exchange (BSE), a Web portal that provides advanced browsing and download capabilities, facilities for contributing basis set data, and an environment that incorporates tools to foster development and interaction of communities. The BSE leverages and enables continued development of the basis set library originally assembled at the Environmental Molecular Sciences Laboratory.

2,642 citations