scispace - formally typeset
Open AccessPosted ContentDOI

NFIC regulates ribosomal biology and ER stress in pancreatic acinar cells and suppresses PDAC initiation

Reads0
Chats0
TLDR
In this paper, NFIC binding sites are found at very short distances from NR5A2-bound genomic regions and both proteins co-occur in the same complex and NFIC dampens the ER stress program through its binding to ER stress gene promoters and is required for complete resolution of Tunicamycin-mediated ER stress.
Abstract
Tissue-specific differentiation is driven by specialized transcriptional networks. Pancreatic acinar cells crucially rely on the PTF1 complex, and on additional transcription factors, to deploy their transcriptional program. Here, we identify NFIC as a novel regulator of acinar differentiation using a variety of methodological strategies. NFIC binding sites are found at very short distances from NR5A2-bound genomic regions and both proteins co-occur in the same complex. Nfic knockout mice show reduced expression of acinar genes and, in ChIP-seq experiments, NFIC binds the promoters of acinar genes. In addition, NFIC binds to the promoter of, and regulates, genes involved in RNA and protein metabolism; in Nfic knockout mice, p-RS6K1 and p-IEF4E are down-regulated indicating reduced activity of the mTOR pathway. In 266-6 acinar cells, NFIC dampens the ER stress program through its binding to ER stress gene promoters and is required for complete resolution of Tunicamycin-mediated ER stress. Normal human pancreata from subjects with low NFIC mRNA levels display reduced epxression of genes down-regulated in Nfic knockout mice. Consistently, NFIC displays reduced expression upon induced acute pancreatitis and is required for proper recovery after damage. Finally, expression of NFIC is lower in samples of mouse and human pancreatic ductal adenocarcinoma and Nfic knockout mice develop an increased number of mutant Kras-driven pre-neoplastic lesions.

read more

Content maybe subject to copyright    Report

NFIC regulates ribosomal biology and ER stress in pancreatic acinar cells
1
and suppresses PDAC initiation
2
3
4
Isidoro Cobo,
1,2
Sumit Paliwal,
1
Júlia Melià-Alomà,
1,3
Ariadna Torres,
1,3
5
Jaime Martínez-Villarreal,
1
Fernando García,
4
Irene Millán,
1,2
Natalia del Pozo,
1,2
Joo-
6
Cheol Park,
5
Ray J. MacDonald,
6
Javier Muñoz,
4
and Francisco X. Real
1-3
7
8
9
Short title: NFIC in pancreatic homeostasis and cancer
10
11
1
Epithelial Carcinogenesis Group, Spanish National Cancer Research Centre-CNIO,
12
Madrid, Spain
13
2
CIBERONC, Madrid, Spain
14
3
Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra,
15
Barcelona, Spain
16
4
Proteomics Unit, Spanish National Cancer Research Centre-CNIO, Madrid, Spain.
17
ProteoRed - ISCIII
18
5
Department of Oral Histology-Developmental Biology, School of Dentistry, Seoul
19
National University, Seoul, Korea
20
6
Department of Molecular Biology, University of Texas Southwestern Medical Center,
21
Dallas, TX, USA
22
23
24
25
Correspondence: Francisco X. Real
26
Centro Nacional de Investigaciones Oncológicas-CNIO
27
Melchor Fernández Almagro, 3
28
28029-Madrid, Spain
29
E-mail: preal@cnio.es
30
31
32
Conflicts of interest: none to declare
33
34
35
Funding: This work was supported, in part, by grants SAF2011-29530, SAF2015-70553-
36
R, and RTI2018-101071-B-I00 from Ministerio de Ciencia, Innovación y Universidades
37
(Madrid, Spain) (co-funded by the ERDF-EU) and RTICC from Instituto de Salud Carlos
38
III (RD12/0036/0034) to FXR. IC was recipient of a Beca de Formación del Personal
39
Investigador from Ministerio de Economía y Competitividad (Madrid, Spain). The
40
research leading to these results has received funding from People Programme (Marie
41
(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted August 9, 2021. ; https://doi.org/10.1101/2021.08.09.455477doi: bioRxiv preprint

2
Curie Actions) of the European Union’s Seventh Framework Programme (FP7/2007-
42
2013) (REA grant agreement 608765”). SP was supported by a Juan de la Cierva
43
Programme fellowship from Ministerio de Ciencia, Innovación y Universidades. IM was
44
supported by a Fellowship from Fundació Bancaria La Caixa (ID 100010434) (grant
45
number LCF/BQ/ES18/11670009). CNIO is supported by Ministerio de Ciencia,
46
Innovación y Universidades as a Centro de Excelencia Severo Ochoa SEV-2015-0510.
47
48
Statement of author contributions
49
IC: study concept and design; acquisition of data; analysis and interpretation of data;
50
statistical analysis; drafting of the manuscript;
51
SP: acquisition of data; analysis and interpretation of data; drafting of the manuscript
52
JMA: acquisition of data; analysis and interpretation of data; drafting of the manuscript
53
AT: acquisition of data; analysis and interpretation of data;
54
JMV: analysis and interpretation of data;
55
FG: acquisition of data; analysis and interpretation of data;
56
IM: analysis and interpretation of data;
57
NdP: technical support and acquisition of data;
58
JCP: material support;
59
RJM: critical revision of the data and important intellectual content;
60
JM: acquisition of data; analysis and interpretation of data;
61
FXR: study concept and design; analysis and interpretation of data; drafting of the
62
manuscript; overall study supervision; obtained funding.
63
All authors provided input about manuscript content.
64
Accession numbers: RNA sequencing data have been deposited in GEO with
65
accession number GSE126907 and NFIC ChIP sequencing data have been deposited
66
in GEO with accession number GSE181098
67
68
(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted August 9, 2021. ; https://doi.org/10.1101/2021.08.09.455477doi: bioRxiv preprint

3
ABSTRACT
69
70
Tissue-specific differentiation is driven by specialized transcriptional networks.
71
Pancreatic acinar cells crucially rely on the PTF1 complex, and on additional
72
transcription factors, to deploy their transcriptional program. Here, we identify NFIC as a
73
novel regulator of acinar differentiation using a variety of methodological strategies. NFIC
74
binding sites are found at very short distances from NR5A2-bound genomic regions and
75
both proteins co-occur in the same complex. Nfic knockout mice show reduced
76
expression of acinar genes and, in ChIP-seq experiments, NFIC binds the promoters of
77
acinar genes. In addition, NFIC binds to the promoter of, and regulates, genes involved
78
in RNA and protein metabolism; in Nfic knockout mice, p-RS6K1 and p-IEF4E are down-
79
regulated indicating reduced activity of the mTOR pathway. In 266-6 acinar cells, NFIC
80
dampens the ER stress program through its binding to ER stress gene promoters and is
81
required for complete resolution of Tunicamycin-mediated ER stress. Normal human
82
pancreata from subjects with low NFIC mRNA levels display reduced epxression of
83
genes down-regulated in Nfic knockout mice. Consistently, NFIC displays reduced
84
expression upon induced acute pancreatitis and is required for proper recovery after
85
damage. Finally, expression of NFIC is lower in samples of mouse and human pancreatic
86
ductal adenocarcinoma and Nfic knockout mice develop an increased number of mutant
87
Kras-driven pre-neoplastic lesions.
88
89
Word count: 211
90
91
Keywords: NFIC, pancreas, acinar differentiation, ribosome, endoplasmic reticulum
92
stress, unfolded protein response, transcriptional networks, pancreatitis, pancreatic
93
cancer
94
95
Abbreviations: ChIP, chromatin immunoprecipitation; DEG, differentially expressed
96
genes; EMT, epithelial-mesenchymal transition; ER, endoplasmic reticulum; GSEA,
97
Gene set enrichment analysis; IF, immunofluorescence; IHC; immunohistochemistry;
98
PDAC, pancreatic ductal adenocarcinoma; TF, transcription factor; TM, tunicamycin;
99
UPR, unfolded protein response.
100
101
(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted August 9, 2021. ; https://doi.org/10.1101/2021.08.09.455477doi: bioRxiv preprint

4
INTRODUCTION
102
103
Pancreatic acinar cells are highly specialized protein synthesis factories that
104
have a well-developed rough endoplasmic reticulum (ER), a prominent Golgi complex,
105
and abundant secretory granules
1
. Acinar differentiation is contingent on the activity of a
106
master regulator, the adult PTF1 complex, composed of the pancreas-specific
107
transcription factors (TFs) PTF1A and RPBJL and the ubiquitous protein E47
2,3
. PTF1
108
binds the proximal promoter of genes coding for digestive enzymes, secretory proteins
109
and other TFs, and activates their expression. The PTF1 complex is the main driver of
110
acinar differentiation but additional TF with tissue-restricted expression patterns are
111
implicated in the fine-tuning of this process, including GATA6
4
, MIST1
5
, and
112
NR5A2/LRH-1
6,7
. Acinar cells play a crucial role in acute and chronic pancreatitis, two
113
common and disabling conditions. Recent work using genetic mouse models has shown
114
that, upon expression of mutant KRas, acinar cells can be the precursors of Pancreatic
115
Intraepithelial Neoplasia (PanIN) and pancreatic ductal adenocarcinoma (PDAC)
8,9
.
116
Our laboratory and others have shown that the acinar differentiation program acts
117
as a tumor suppressor in the pancreas. Monoallelic or homozygous inactivation of
118
several acinar transcriptional regulators in the germline, the embryonic pancreas, or the
119
adult pancreas can result in compromised acinar function that favors loss of cellular
120
identity and poises acinar cells for transformation upon activation of mutant KRas
10,11,12
.
121
The tumor suppressive function of these TF is not obvious because the exocrine
122
pancreas has a large functional reserve, i.e. massive alterations in cellular function need
123
to occur in order to be reflected in histological or clinical changes.
124
Here, we use bioinformatics tools to identify NFIC as a novel acinar regulator.
125
NFIC is a member of the nuclear factor I family of TFs that regulate both ubiquitous and
126
tissue-restricted genes
13
. In the mammary gland, NFIC activates the expression of milk
127
genes involved in lactation
14
. Furthermore, it acts as a breast cancer tumor suppressor,
128
as it directly represses the expression of Ccnd1 and Foxf1, a potent inducer of epithelial-
129
mesenchymal transition (EMT), invasiveness, and tumorigenicity. Additional roles have
130
been proposed through the regulation of Trp53
15,16,17
. The physiological role of NFIC has
131
been best studied in dentinogenesis, since Nfic
-/-
mice develop short molar roots and
132
display aberrant odontoblast differentiation and dentin formation
18
. NFIC regulates
133
odontoblast-related genes, including Dssp
19
, Wnt
20
, and hedgehog signaling
21
.
134
(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted August 9, 2021. ; https://doi.org/10.1101/2021.08.09.455477doi: bioRxiv preprint

5
Using a combination of omics analyses and studies in knockout mice and cultured
135
cells, we now uncover novel roles of NFIC as a regulator of acinar function whose major
136
impact is at the level of the ER stress response in murine and human pancreas. Unlike
137
most other TFs previously identified as required for full acinar function, NFIC belongs to
138
a novel family of acinar regulators with tissue-wide expression. NFIC dysregulation
139
sensitizes the pancreas to damage and neoplastic transformation.
140
141
142
(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted August 9, 2021. ; https://doi.org/10.1101/2021.08.09.455477doi: bioRxiv preprint

Citations
More filters
Journal ArticleDOI

Gene expression signatures of individual ductal carcinoma in situ lesions identify processes and biomarkers associated with progression towards invasive ductal carcinoma

TL;DR: In this article , gene expression analysis from 2,000 individually micro-dissected ductal lesions representing 145 patients was performed to identify early processes and potential biomarkers, including CAMK2N1 , MNX1 , ADCY5 , HOXC11 and ANKRD22 , whose reduced expression is associated with the progression of DCIS to invasive breast cancer.
Journal ArticleDOI

Transcriptome analysis of the response to thyroid hormone in Xenopus neural stem and progenitor cells

TL;DR: This work provides new insights into the dynamics of activation of NPSCs in vivo in response to T3 during a critical period of neurogenesis in the metamorphosis, suggesting that NSPCs activation induced by T3 is characterized by an early proteome remodeling through the synthesis of the translation machinery and the degradation of proteins by the proteasome.
Posted ContentDOI

Creating a ‘Timeline’ of ductal carcinoma in situ to identify processes and biomarkers for progression towards invasive ductal carcinoma

TL;DR: A ‘Timeline’ of disease progression is generated, utilising the variability within patients and combining >2,000 individually micro-dissected ductal lesions from 145 patients into one continuous trajectory, showing there is a progressive loss in basal layer integrity, coupled with two epithelial to mesenchymal transitions (EMT) early in the timeline.
References
More filters
Journal ArticleDOI

Nuclear factor I-C reciprocally regulates adipocyte and osteoblast differentiation via control of canonical Wnt signaling.

TL;DR: This study suggests that NFIC balances adipogenic and osteogenic differentiation from progenitor cells through controlling canonical Wnt signaling and highlights the potential of NFIC as a target for new therapies to control metabolic disorders like osteoporosis and obesity.
Journal ArticleDOI

Post-transcriptional down-regulation of expression of transcription factor NF1 by Ha-ras oncogene.

TL;DR: It is demonstrated that an activated Ha-ras-induced pathway destabilizes the half-life of mRNAs encoding specific members in the NF1 family of transcription factors, which leads to a decrease in NF1-dependent gene expression.
Journal ArticleDOI

Nuclear Factor I-C (NFIC) Regulates Dentin Sialophosphoprotein (DSPP) and E-cadherin via Control of Krüppel-like Factor 4 (KLF4) During Dentinogenesis

TL;DR: The Nfic-Klf4 dentin matrix protein 1 (Dmp1)-Dspp pathway in odontoblasts is established and the important role of NFIC in regulating KLF4 during dentinogenesis is indicated.
Journal ArticleDOI

MIST1 and PTF1 collaborate in feed-forward regulatory loops that maintain the pancreatic acinar phenotype in adult mice

TL;DR: A constellation of feed-forward loops formed by the pancreatic transcription factors MIST1 and PTF1 that govern the differentiated phenotype of the adult pancreatic acinar cell are reported.
Related Papers (5)