scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Nickel-Based Superalloys for Advanced Turbine Engines: Chemistry, Microstructure and Properties

01 Mar 2006-Journal of Propulsion and Power (American Institute of Aeronautics and Astronautics)-Vol. 22, Iss: 2, pp 361-374
TL;DR: The chemical, physical, and mechanical characteristics of nickel-based superalloys are reviewed with emphasis on the use of this class of materials within turbine engines as mentioned in this paper, and the role of major and minor alloying additions in multicomponent commercial cast and wrought super-alloys is discussed.
Abstract: The chemical, physical, and mechanical characteristics of nickel-based superalloys are reviewed with emphasis on the use of this class of materials within turbine engines. The role of major and minor alloying additions in multicomponent commercial cast and wrought superalloys is discussed. Microstructural stability and phases observed during processing and in subsequent elevated-temperature service are summarized. Processing paths and recent advances in processing are addressed. Mechanical properties and deformation mechanisms are reviewed, including tensile properties, creep, fatigue, and cyclic crack growth. I. Introduction N ICKEL-BASED superalloys are an unusual class of metallic materials with an exceptional combination of hightemperature strength, toughness, and resistance to degradation in corrosive or oxidizing environments. These materials are widely used in aircraft and power-generation turbines, rocket engines, and other challenging environments, including nuclear power and chemical processing plants. Intensive alloy and process development activities during the past few decades have resulted in alloys that can tolerate average temperatures of 1050 ◦ C with occasional excursions (or local hot spots near airfoil tips) to temperatures as high as 1200 ◦ C, 1 which is approximately 90% of the melting point of the material. The underlying aspects of microstructure and composition that result in these exceptional properties are briefly reviewed here. Major classes of superalloys that are utilized in gas-turbine engines and the corresponding processes for their production are outlined along with characteristic mechanical and physical properties.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: The microstructural and mechanical properties of Inconel 718 were determined on the specimens manufactured by selective laser melting (SLM) of prealloyed powder as mentioned in this paper, showing that columnar grains of supersaturated solid solution with internal microsegregation of Nb and Mo, demonstrated by fractions of Laves eutectic or its divorced form in interdendritic regions.
Abstract: The microstructural and mechanical properties of Inconel 718 were determined on the specimens manufactured by selective laser melting (SLM) of prealloyed powder. High- density (99.8%) cylindrical specimens were built with four orientations (0°, 45°, 45°×45° and 90°) in relation to the building and scanning directions. Because of directional, dendritic-cellular grain growth, microstructure of the as-built specimens was characterized by columnar grains of supersaturated solid solution with internal microsegregation of Nb and Mo, demonstrated by fractions of Laves eutectic or its divorced form in interdendritic regions. Such a heterogeneous microstructure is unsuitable for direct post-process aging and makes the alloy sensitive to subsolidus liquation during rapid heating to the homogenizing temperature. In homogenized and aged condition, the alloy received a very good set of mechanical properties in comparison with the wrought material. In heat-treated condition, like in as-built condition, weak anisotropy of properties was found, manifested by lower Young's modulus, yield strength and tensile strength of the specimens extended along the build direction in comparison to the values for the other variants of the specimens. This is attributed to the fact that the grains maintained their geometric and crystallographic texture obtained during solidification.

512 citations

Journal ArticleDOI
TL;DR: This research presents a new generation of metallic materials that are fundamental to advanced aircraft engines and their applications are expanding the scope for discovery and implementation for future generations of advanced propulsion systems.
Abstract: Metallic materials are fundamental to advanced aircraft engines. While perceived as mature, emerging computational, experimental and processing innovations are expanding the scope for discovery and implementation of new metallic materials for future generations of advanced propulsion systems.

499 citations

Journal ArticleDOI
TL;DR: In this paper, the microstructures of HESAs consisting of γ and γ′ phases are similar to that of Ni-base superalloys and refractory HEAs.

441 citations

Journal ArticleDOI
TL;DR: In this article, the authors focused on the tool wear characteristics in the machining of nickel-based superalloys, and the state of the art in the fields of failure mechanism, monitoring and prediction, and control of tool wear are reviewed.
Abstract: Nickel-based superalloy is widely employed in aircraft engines and the hot end components of various types of gas turbines with its high strength, strong corrosion resistance and excellent thermal fatigue properties and thermal stability. However, nickel-based superalloy is one of the extremely difficult-to-cut materials. During the machining process, the interaction between the tool and the workpiece causes the severe plastic deformation in the local area of workpiece, and the intense friction at the tool–workpiece interface. The resulting cutting heat coupled with the serious work hardening leads to a series of flaws, such as excessive tool wear, frequent tool change, short tool life, low productivity, and large amount of power consumption etc., in which the excessive tool wear has become one of the main bottlenecks that constraints the machinability of nickel-based superalloys and its wide range of applications. In this article, attention is mainly focused on the tool wear characteristics in the machining of nickel-based superalloys, and the state of the art in the fields of failure mechanism, monitoring and prediction, and control of tool wear are reviewed. The survey of existing works has revealed several gaps in the aspects of tool self-organizing process based on the non-equilibrium thermodynamics, tool wear considering the tool nose radius, thermal diffusion layer in coated tools, tool life prediction based on the thermal–mechanical coupling, and industrial application of tool wear online monitoring devices. The review aims at providing an insight into the tool wear characteristics in the machining of nickel-based superalloys and shows the great potential for further investigations and innovation in the field of tool wear.

409 citations

Journal ArticleDOI
TL;DR: The high-temperature strength and deformation behavior of γ/γ′ two-phase Co-Al-W-base alloys have been studied with polycrystalline and single-crystal materials.

388 citations

References
More filters
Book
01 Jan 1979
TL;DR: In this article, Bertotti, Ferro, and Mazetti proposed a theory of dislocation drag in covalent crystals and formed a model of the formation and evolution of dislocations during irradiation.
Abstract: Preface. Electrical noise associated with dislocations and plastic flow in metals (G. Bertotti, A. Ferro, F. Fiorillo, P. Mazetti). Mechanisms of dislocation drag (V.I. Alshits, V.L. Indenbom). Dislocations in covalent crystals (H. Alexander). Formation and evolution of dislocation structures during irradiation (B.O. Hall). Dislocation theory of martensitic transformations (G.B. Olsen, M. Cohen). Author index. Subject index. Cumulative index.

2,752 citations

Journal ArticleDOI
TL;DR: In this paper, the authors studied the effect of dislocation-free nickel base superalloy single crystals with high volume fractions of the γ′ phase on their deformation and found that the dislocation free precipitates are resistant to shearing by dislocations.
Abstract: Creep deformation in 〈001〉 oriented nickel base superalloy single crystals has been studied in an effort to assess the factors which contribute to the overall creep resistance of superalloys with high volume fractions of γ′ phase. Detailed observations of three dimensional dislocation arrangements produced by creep have been made with the use of stereo electron microscopy. In the temperature range of 800–900°C at stresses of 552 MPa or lower, the dislocation-free γ′ precipitates are resistant to shearing by dislocations. As a result, creep deformation occurs by forced bowing of dislocations through the narrow γ matrix channels on {111} planes. At moderate levels of temperature and stress there are incubation periods in virgin crystals prior to the onset of primary creep. The incubations arise because of the difficult process of filling the initially dislocation starved material with creep dislocations from widely spaced sources. When the newly generated dislocations percolate through the cross section, incubation comes to an end and primary creep begins. In primary creep neither work hardening nor any type of recovery plays an important role. The creep rate decelerates because the favorable initial thermal misfit stresses between γ and γ′ phases are relieved by creep flow. Continued creep leads to a build-up of a three-dimensional nodal network of dislocations. This three-dimensional network fills the γ matrix channels during steady state creep and achieves a quasi-stationary structure in time. In situ annealing experiments show that static recovery is ineffective at causing rearrangements in the three-dimensional network at temperatures of 850°C or lower. The kinematical dislocation replacement processes which maintain the quasi-stationary dislocation network structures during apparent steady state creep are not understood and require further study. Because of the impenetrability of the γ′ precipitates, dislocations move through the γ matrix by forced Orowan bowing, and this accounts for a major component of the creep resistance. In addition, the frictional constraint of the coherent or semi-coherent precipitates leads to the build-up of pressure gradients in the microstructure, and this provides load carrying capacity. There is also a smaller component of solid solution strengthening. Work hardening is comparatively unimportant. Finite element analysis shows that the non-deforming precipitates are increasingly stressed as creep deformation accumulates in the matrix. In the later stages of steady state creep and during tertiary creep the stresses in the precipitates rise to high enough levels to cause shearing of the γ′ particles by dislocations entering from the γ matrix. The recovery resistance of the material is in part due to a very low effective diffusion constant and in another part due to the fact that the three-dimensional dislocation networks formed in the γ matrix serve to neutralize the misfit between the γ and γ′ phases.

782 citations

Journal ArticleDOI
TL;DR: In this paper, the formation of topologically close-packed (TCP) phases due to the addition of solid solution strengtheners, such as rhenium, molybdenum and tungsten, has been studied.

510 citations

Journal ArticleDOI
TL;DR: In this paper, it is established from metallographic and flow stress observations that dynamic recrystallization occurs at strains greater than a critical value and results in a recrystized grain size which is determined entirely by the flow stress.

498 citations

Journal ArticleDOI
TL;DR: In this article, a third generation Ni-base single-crystal superalloy TMS-75 and its γ/γ " tie line alloys were designed to contain various volume fractions of γ, while the compositions of two individual phases were kept the same.

444 citations