scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Nitric oxide in plants: an assessment of the current state of knowledge

TL;DR: It is difficult to define a bespoke plant NO signalling pathway, but rather NO appears to act as a modifier of other signalling pathways, and early reports that NO signalling involves cGMP-as in animal systems-require revisiting.
Abstract: Background and aims After a series of seminal works during the last decade of the 20th century, nitric oxide (NO) is now firmly placed in the pantheon of plant signals. Nitric oxide acts in plant–microbe interactions, responses to abiotic stress, stomatal regulation and a range of developmental processes. By considering the recent advances in plant NO biology, this review will highlight certain key aspects that require further attention.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: The concept of reactive oxygen species (ROS) was re-evaluated in recent years and the term "oxidative signalling" was created as discussed by the authors, which is a collective term that includes both oxygen radicals, like superoxide (O 2 ) and hydroxyl (·OH) radicals, and other non-radicals such as hydrogen peroxide (H2O2), singlet oxygen ((1)O2 or (1) Δg), etc.
Abstract: The production of reactive oxygen species (ROS) is the unavoidable consequence of aerobic life. ROS is a collective term that includes both oxygen radicals, like superoxide (O 2. -) and hydroxyl (·OH) radicals, and other non-radicals such as hydrogen peroxide (H2O2), singlet oxygen ((1)O2 or (1)Δg), etc. In plants, ROS are produced in different cell compartments and are oxidizing species, particularly hydroxyl radicals and singlet oxygen, that can produce serious damage in biological systems (oxidative stress). However, plant cells also have an array of antioxidants which, normally, can scavenge the excess oxidants produced and so avoid deleterious effects on the plant cell bio-molecules. The concept of 'oxidative stress' was re-evaluated in recent years and the term 'oxidative signalling' was created. This means that ROS production, apart from being a potentially harmful process, is also an important component of the signalling network that plants use for their development and for responding to environmental challenges. It is known that ROS play an important role regulating numerous biological processes such as growth, development, response to biotic and environmental stresses, and programmed cell death. The term reactive nitrogen species (RNS) includes radicals like nitric oxide (NO· ) and nitric dioxide (NO2.), as well as non-radicals such as nitrous acid (HNO2) and dinitrogen tetroxide (N2O4), among others. RNS are also produced in plants although the generating systems have still not been fully characterized. Nitric oxide (NO·) has an important function as a key signalling molecule in plant growth, development, and senescence, and RNS, like ROS, also play an important role as signalling molecules in the response to environmental (abiotic) stress. Similarly, NO· is a key mediator, in co-operation with ROS, in the defence response to pathogen attacks in plants. ROS and RNS have been demonstrated to have an increasingly important role in biology and medicine.

443 citations

Journal ArticleDOI
TL;DR: The myriad roles of NO and SNOs in plant biology are reviewed and, where known, the molecular mechanisms underpining their activity are reviewed.
Abstract: Nitric oxide (NO), a gaseous, redox-active small molecule, is gradually becoming established as a central regulator of growth, development, immunity and environmental interactions in plants. A major route for the transfer of NO bioactivity is S-nitrosylation, the covalent attachment of an NO moiety to a protein cysteine thiol to form an S-nitrosothiol (SNO). This chemical transformation is rapidly emerging as a prototypic, redox-based post-translational modification integral to the life of plants. Here we review the myriad roles of NO and SNOs in plant biology and, where known, the molecular mechanisms underpining their activity.

403 citations


Cites background from "Nitric oxide in plants: an assessme..."

  • ...Seven sources have been proposed as possible routes for NO generation in plants (Gupta et al., 2011; Mur et al., 2013), which depend upon either reductive or oxidative chemistry (Fig....

    [...]

Journal ArticleDOI
TL;DR: This review provides a comprehensive and critical evaluation of the published literature on interactions between abiotic stress and polyamines in plants, and examines the experimental strategies used to understand the functional significance of this relationship with the aim of improving plant productivity, especially under conditions of abiotics stress.
Abstract: The physiological relationship between abiotic stress in plants and polyamines was reported more than 40 years ago. Ever since there has been a debate as to whether increased polyamines protect plants against abiotic stress (e.g., due to their ability to deal with oxidative radicals) or cause damage to them (perhaps due to hydrogen peroxide produced by their catabolism). The observation that cellular polyamines are typically elevated in plants under both short-term as well as long-term abiotic stress conditions is consistent with the possibility of their dual effects, i.e., being protectors from as well as perpetrators of stress damage to the cells. The observed increase in tolerance of plants to abiotic stress when their cellular contents are elevated by either exogenous treatment with polyamines or through genetic engineering with genes encoding polyamine biosynthetic enzymes is indicative of a protective role for them. However, through their catabolic production of hydrogen peroxide and acrolein, both strong oxidizers, they can potentially be the cause of cellular harm during stress. In fact, somewhat enigmatic but strong positive relationship between abiotic stress and foliar polyamines has been proposed as a potential biochemical marker of persistent environmental stress in forest trees in which phenotypic symptoms of stress are not yet visible. Such markers may help forewarn forest managers to undertake amelioration strategies before the appearance of visual symptoms of stress and damage at which stage it is often too late for implementing strategies for stress remediation and reversal of damage. This review provides a comprehensive and critical evaluation of the published literature on interactions between abiotic stress and polyamines in plants, and examines the experimental strategies used to understand the functional significance of this relationship with the aim of improving plant productivity, especially under conditions of abiotic stress.

366 citations


Cites background from "Nitric oxide in plants: an assessme..."

  • ...…pathway is nitric oxide (NO), whose role in various developmental and physiological processes in plants has recently drawn serious attention (Tun et al., 2006; Mur et al., 2013; Tanou et al., 2014); the production of NO also increases under abiotic stress conditions (Wimalasekera et al., 2011)....

    [...]

Journal ArticleDOI
TL;DR: It is demonstrated how NO sensing is integrated across multiple physiological processes by direct modulation of transcription factor stability and identifies group VII ERFs as central hubs for the perception of gaseous signals in plants.

302 citations


Cites background from "Nitric oxide in plants: an assessme..."

  • ...In plants, NO regulatesmany different processes throughout development, including seed dormancy, postgerminative vegetative growth, flowering, stomatal aperture, leaf senescence, and response to pathogens (Mur et al., 2013)....

    [...]

  • ...Nitric Oxide Controls Germination through Group VII ERFs A wide range of plant developmental processes and responses to abiotic and biotic stresses are regulated by NO (Mur et al., 2013), including the alleviation of seed dormancy, inhibition of hypocotyl elongation, and enhancement of stomatal closure (Bethke et al....

    [...]

Journal ArticleDOI
TL;DR: A short survey of the central roles of ascorbate and glutathione—the latter alone or in conjunction with S-nitrosoglutathione reductase—in controlling NO bioavailability and putative functions of this molecule and other NO derivatives in plant cells are described.
Abstract: In plant cells the free radical nitric oxide (NO) interacts both with anti- as well as prooxidants. This review provides a short survey of the central roles of ascorbate and glutathione – the latter alone or in conjunction with S-nitrosoglutathione reductase – in controlling NO bioavailability. Other major topics include the regulation of antioxidant enzymes by NO and the interplay between NO and reactive oxygen species (ROS). Under stress conditions NO regulates antioxidant enzymes at the level of activity and gene expression, which can cause either enhancement or reduction of the cellular redox status. For instance chronic NO production during salt stress induced the antioxidant system thereby increasing salt tolerance in various plants. In contrast, rapid NO accumulation in response to strong stress stimuli was occasionally linked to inhibition of antioxidant enzymes and a subsequent rise in hydrogen peroxide levels. Moreover, during incompatible Arabidopsis thaliana-Pseudomonas syringae interactions ROS burst and cell death progression were shown to be terminated by S-nitrosylation-triggered inhibition of NADPH oxidases, further highlighting the multiple roles of NO during redox-signalling. In chemical reactions between NO and ROS reactive nitrogen species arise with characteristics different from their precursors. Recently, peroxynitrite formed by the reaction of NO with superoxide has attracted much attention. We will describe putative functions of this molecule and other NO derivatives in plant cells. Non-symbiotic hemoglobins (nsHb) were proposed to act in NO degradation. Additionally, like other oxidases nsHb is also capable of catalysing protein nitration through a nitrite- and hydrogen peroxide-dependent process. The physiological significance of the described findings under abiotic and biotic stress conditions will be discussed with a special emphasis on pathogen-induced programmed cell death.

295 citations

References
More filters
Journal ArticleDOI
TL;DR: The mechanisms of ROS generation and removal in plants during development and under biotic and abiotic stress conditions are described and the possible functions and mechanisms for ROS sensing and signaling in plants are compared with those in animals and yeast.
Abstract: Several reactive oxygen species (ROS) are continuously produced in plants as byproducts of aerobic metabolism. Depending on the nature of the ROS species, some are highly toxic and rapidly detoxified by various cellular enzymatic and nonenzymatic mechanisms. Whereas plants are surfeited with mechanisms to combat increased ROS levels during abiotic stress conditions, in other circumstances plants appear to purposefully generate ROS as signaling molecules to control various processes including pathogen defense, programmed cell death, and stomatal behavior. This review describes the mechanisms of ROS generation and removal in plants during development and under biotic and abiotic stress conditions. New insights into the complexity and roles that ROS play in plants have come from genetic analyses of ROS detoxifying and signaling mutants. Considering recent ROS-induced genome-wide expression analyses, the possible functions and mechanisms for ROS sensing and signaling in plants are compared with those in animals and yeast.

9,908 citations


"Nitric oxide in plants: an assessme..." refers background in this paper

  • ...As NO is now firmly established as an important signal in plant science, a remaining task is to describe the various mechanisms of NO generation in plants....

    [...]

  • ...However, fluorescence was also significant with hydroxyl radicals (Wu et al. 2011), which are likely to be generated in stressed plants (Apel and Hirt 2004)....

    [...]

Journal ArticleDOI
TL;DR: The new HITRAN is greatly extended in terms of accuracy, spectral coverage, additional absorption phenomena, added line-shape formalisms, and validity, and molecules, isotopologues, and perturbing gases have been added that address the issues of atmospheres beyond the Earth.
Abstract: This paper describes the contents of the 2016 edition of the HITRAN molecular spectroscopic compilation. The new edition replaces the previous HITRAN edition of 2012 and its updates during the intervening years. The HITRAN molecular absorption compilation is composed of five major components: the traditional line-by-line spectroscopic parameters required for high-resolution radiative-transfer codes, infrared absorption cross-sections for molecules not yet amenable to representation in a line-by-line form, collision-induced absorption data, aerosol indices of refraction, and general tables such as partition sums that apply globally to the data. The new HITRAN is greatly extended in terms of accuracy, spectral coverage, additional absorption phenomena, added line-shape formalisms, and validity. Moreover, molecules, isotopologues, and perturbing gases have been added that address the issues of atmospheres beyond the Earth. Of considerable note, experimental IR cross-sections for almost 300 additional molecules important in different areas of atmospheric science have been added to the database. The compilation can be accessed through www.hitran.org. Most of the HITRAN data have now been cast into an underlying relational database structure that offers many advantages over the long-standing sequential text-based structure. The new structure empowers the user in many ways. It enables the incorporation of an extended set of fundamental parameters per transition, sophisticated line-shape formalisms, easy user-defined output formats, and very convenient searching, filtering, and plotting of data. A powerful application programming interface making use of structured query language (SQL) features for higher-level applications of HITRAN is also provided.

7,638 citations

Journal ArticleDOI
TL;DR: Current evidence indicates that most of the cytotoxicity attributed to NO is rather due to peroxynitrite, produced from the diffusion-controlled reaction between NO and another free radical, the superoxide anion, which is presented in detail in this review.
Abstract: The discovery that mammalian cells have the ability to synthesize the free radical nitric oxide (NO) has stimulated an extraordinary impetus for scientific research in all the fields of biology and medicine. Since its early description as an endothelial-derived relaxing factor, NO has emerged as a fundamental signaling device regulating virtually every critical cellular function, as well as a potent mediator of cellular damage in a wide range of conditions. Recent evidence indicates that most of the cytotoxicity attributed to NO is rather due to peroxynitrite, produced from the diffusion-controlled reaction between NO and another free radical, the superoxide anion. Peroxynitrite interacts with lipids, DNA, and proteins via direct oxidative reactions or via indirect, radical-mediated mechanisms. These reactions trigger cellular responses ranging from subtle modulations of cell signaling to overwhelming oxidative injury, committing cells to necrosis or apoptosis. In vivo, peroxynitrite generation represents a crucial pathogenic mechanism in conditions such as stroke, myocardial infarction, chronic heart failure, diabetes, circulatory shock, chronic inflammatory diseases, cancer, and neurodegenerative disorders. Hence, novel pharmacological strategies aimed at removing peroxynitrite might represent powerful therapeutic tools in the future. Evidence supporting these novel roles of NO and peroxynitrite is presented in detail in this review.

5,514 citations


"Nitric oxide in plants: an assessme..." refers background in this paper

  • ...This is a highly toxic molecule that can generate hydroxyl radicals (ONOO2 + H+ NO22 + OH.) and cause considerable macromolecular damage via proton abstraction, and could lead ultimately to cell death as in mammalian systems (Pacher et al. 2007)....

    [...]

Journal ArticleDOI
TL;DR: Nitric oxide (NO), the smallest signalling molecule known, is produced by three isoforms of NO synthase (NOS), which can be expressed in many cell types in response to lipopolysaccharide, cytokines, or other agents.
Abstract: Nitric oxide (NO), the smallest signalling molecule known, is produced by three isoforms of NO synthase (NOS; EC 1.14.13.39). They all utilize l-arginine and molecular oxygen as substrates and require the cofactors reduced nicotinamide-adenine-dinucleotide phosphate (NADPH), flavin adenine dinucleotide (FAD), flavin mononucleotide (FMN), and (6R-)5,6,7,8-tetrahydrobiopterin (BH(4)). All NOS bind calmodulin and contain haem. Neuronal NOS (nNOS, NOS I) is constitutively expressed in central and peripheral neurons and some other cell types. Its functions include synaptic plasticity in the central nervous system (CNS), central regulation of blood pressure, smooth muscle relaxation, and vasodilatation via peripheral nitrergic nerves. Nitrergic nerves are of particular importance in the relaxation of corpus cavernosum and penile erection. Phosphodiesterase 5 inhibitors (sildenafil, vardenafil, and tadalafil) require at least a residual nNOS activity for their action. Inducible NOS (NOS II) can be expressed in many cell types in response to lipopolysaccharide, cytokines, or other agents. Inducible NOS generates large amounts of NO that have cytostatic effects on parasitic target cells. Inducible NOS contributes to the pathophysiology of inflammatory diseases and septic shock. Endothelial NOS (eNOS, NOS III) is mostly expressed in endothelial cells. It keeps blood vessels dilated, controls blood pressure, and has numerous other vasoprotective and anti-atherosclerotic effects. Many cardiovascular risk factors lead to oxidative stress, eNOS uncoupling, and endothelial dysfunction in the vasculature. Pharmacologically, vascular oxidative stress can be reduced and eNOS functionality restored with renin- and angiotensin-converting enzyme-inhibitors, with angiotensin receptor blockers, and with statins.

3,077 citations


"Nitric oxide in plants: an assessme..." refers background in this paper

  • ...These NOS are associated, respectively, with the neuronal, smooth muscle relaxation and induction following immunological challenge (Forstermann and Sessa 2012)....

    [...]

  • ...AoB PLANTS 5: pls052; doi:10.1093/aobpla/pls052, available online at www.aobplants.oxfordjournals.org & The Authors 2012 1...

    [...]

Journal ArticleDOI
TL;DR: Genevestigator as mentioned in this paper is a web-browser interface for gene expression analysis using Affymetrix GeneChip data, which allows users to retrieve the expression patterns of individual genes throughout chosen environmental conditions, growth stages, or organs.
Abstract: High-throughput gene expression analysis has become a frequent and powerful research tool in biology. At present, however, few software applications have been developed for biologists to query large microarray gene expression databases using a Web-browser interface. We present GENEVESTIGATOR, a database and Web-browser data mining interface for Affymetrix GeneChip data. Users can query the database to retrieve the expression patterns of individual genes throughout chosen environmental conditions, growth stages, or organs. Reversely, mining tools allow users to identify genes specifically expressed during selected stresses, growth stages, or in particular organs. Using GENEVESTIGATOR, the gene expression profiles of more than 22,000 Arabidopsis genes can be obtained, including those of 10,600 currently uncharacterized genes. The objective of this software application is to direct gene functional discovery and design of new experiments by providing plant biologists with contextual information on the expression of genes. The database and analysis toolbox is available as a community resource at https://www.genevestigator.ethz.ch.

2,485 citations


"Nitric oxide in plants: an assessme..." refers background or methods in this paper

  • ...2 (At5g44420) were extracted from the Genevestigator database (Zimmermann et al. 2004)....

    [...]

  • ...…available online at www.aobplants.oxfordjournals.org & The Authors 2012 interrogation of transcriptome data in the Genevestigator database (Zimmermann et al. 2004) has suggested that GLB1 (the major Hb) is also suppressed in response to heat, Fe deficiency, salt and drought stress (Fig....

    [...]