scispace - formally typeset
Search or ask a question

nlme : Linear and nonlinear mixed effects models

01 Jan 2006-
About: The article was published on 2006-01-01 and is currently open access. It has received 9437 citations till now.
Citations
More filters
Journal ArticleDOI
TL;DR: In this article, a model is described in an lmer call by a formula, in this case including both fixed-and random-effects terms, and the formula and data together determine a numerical representation of the model from which the profiled deviance or the profeatured REML criterion can be evaluated as a function of some of model parameters.
Abstract: Maximum likelihood or restricted maximum likelihood (REML) estimates of the parameters in linear mixed-effects models can be determined using the lmer function in the lme4 package for R. As for most model-fitting functions in R, the model is described in an lmer call by a formula, in this case including both fixed- and random-effects terms. The formula and data together determine a numerical representation of the model from which the profiled deviance or the profiled REML criterion can be evaluated as a function of some of the model parameters. The appropriate criterion is optimized, using one of the constrained optimization functions in R, to provide the parameter estimates. We describe the structure of the model, the steps in evaluating the profiled deviance or REML criterion, and the structure of classes or types that represents such a model. Sufficient detail is included to allow specialization of these structures by users who wish to write functions to fit specialized linear mixed models, such as models incorporating pedigrees or smoothing splines, that are not easily expressible in the formula language used by lmer.

50,607 citations

Journal ArticleDOI
TL;DR: In this paper, the authors present an open-source implementation of structural equation models (SEM), a form of path analysis that resolves complex multivariate relationships among a suite of interrelated variables.
Abstract: Summary Ecologists and evolutionary biologists rely on an increasingly sophisticated set of statistical tools to describe complex natural systems. One such tool that has gained significant traction in the biological sciences is structural equation models (SEM), a form of path analysis that resolves complex multivariate relationships among a suite of interrelated variables. Evaluation of SEMs has historically relied on covariances among variables, rather than the values of the data points themselves. While this approach permits a wide variety of model forms, it limits the incorporation of detailed specifications. Recent developments have allowed for the simultaneous implementation of non-normal distributions, random effects and different correlation structures using local estimation, but this process is not yet automated and consequently, evaluation can be prohibitive with complex models. Here, I present a fully documented, open-source package piecewiseSEM, a practical implementation of confirmatory path analysis for the r programming language. The package extends this method to all current (generalized) linear, (phylogenetic) least-square, and mixed effects models, relying on familiar r syntax. I also provide two worked examples: one involving random effects and temporal autocorrelation, and a second involving phylogenetically independent contrasts. My goal is to provide a user-friendly and tractable implementation of SEM that also reflects the ecological and methodological processes generating data.

2,194 citations

Book
11 Jul 2019
TL;DR: The aim of the present paper is to provide an overview of state-of-the-art dose-response analysis, both in terms of general concepts that have evolved and matured over the years and by means of concrete examples.
Abstract: Dose-response analysis can be carried out using multi-purpose commercial statistical software, but except for a few special cases the analysis easily becomes cumbersome as relevant, non-standard output requires manual programming. The extension package drc for the statistical environment R provides a flexible and versatile infrastructure for dose-response analyses in general. The present version of the package, reflecting extensions and modifications over the last decade, provides a user-friendly interface to specify the model assumptions about the dose-response relationship and comes with a number of extractors for summarizing fitted models and carrying out inference on derived parameters. The aim of the present paper is to provide an overview of state-of-the-art dose-response analysis, both in terms of general concepts that have evolved and matured over the years and by means of concrete examples.

1,827 citations

Journal ArticleDOI
TL;DR: In this paper, the authors introduce a new R package nparLD which provides statisticians and researchers from other disciplines an easy and user-friendly access to the most up-to-date robust rank-based methods for the analysis of longitudinal data in factorial settings.
Abstract: Longitudinal data from factorial experiments frequently arise in various fields of study, ranging from medicine and biology to public policy and sociology In most practical situations, the distribution of observed data is unknown and there may exist a number of atypical measurements and outliers Hence, use of parametric and semi-parametric procedures that impose restrictive distributional assumptions on observed longitudinal samples becomes questionable This, in turn, has led to a substantial demand for statistical procedures that enable us to accurately and reliably analyze longitudinal measurements in factorial experiments with minimal conditions on available data, and robust nonparametric methodology offering such a possibility becomes of particular practical importance In this article, we introduce a new R package nparLD which provides statisticians and researchers from other disciplines an easy and user-friendly access to the most up-to-date robust rank-based methods for the analysis of longitudinal data in factorial settings We illustrate the implemented procedures by case studies from dentistry, biology, and medicine

1,181 citations

Journal ArticleDOI
08 May 2015-Science
TL;DR: Tissues exhibit characteristic transcriptional signatures that show stability in postmortem samples that are dominated by a relatively small number of genes, though few are exclusive to a particular tissue and vary more across tissues than individuals.
Abstract: Transcriptional regulation and posttranscriptional processing underlie many cellular and organismal phenotypes. We used RNA sequence data generated by Genotype-Tissue Expression (GTEx) project to investigate the patterns of transcriptome variation across individuals and tissues. Tissues exhibit characteristic transcriptional signatures that show stability in postmortem samples. These signatures are dominated by a relatively small number of genes—which is most clearly seen in blood—though few are exclusive to a particular tissue and vary more across tissues than individuals. Genes exhibiting high interindividual expression variation include disease candidates associated with sex, ethnicity, and age. Primary transcription is the major driver of cellular specificity, with splicing playing mostly a complementary role; except for the brain, which exhibits a more divergent splicing program. Variation in splicing, despite its stochasticity, may play in contrast a comparatively greater role in defining individual phenotypes.

1,131 citations