scispace - formally typeset
Search or ask a question
Journal ArticleDOI

NMDA receptor-dependent switching between different gamma rhythm-generating microcircuits in entorhinal cortex

TL;DR: The two different gamma frequencies matched the different intrinsic frequencies in hippocampal areas CA3 and CA1, suggesting that NMDA receptor activation may control the nature of temporal interactions between mEC and hippocampus, thus influencing the pathway for information transfer between the two regions.
Abstract: Local circuits in the medial entorhinal cortex (mEC) and hippocampus generate gamma frequency population rhythms independently. Temporal interaction between these areas at gamma frequencies is implicated in memory—a phenomenon linked to activity of NMDA-subtype glutamate receptors. While blockade of NMDA receptors does not affect frequency of gamma rhythms in hippocampus, it exposes a second, lower frequency (25–35 Hz) gamma rhythm in mEC. In experiment and model, NMDA receptor-dependent mEC gamma rhythms were mediated by basket interneurons, but NMDA receptor-independent gamma rhythms were mediated by a novel interneuron subtype—the goblet cell. This cell was distinct from basket cells in morphology, intrinsic membrane properties and synaptic inputs. The two different gamma frequencies matched the different intrinsic frequencies in hippocampal areas CA3 and CA1, suggesting that NMDA receptor activation may control the nature of temporal interactions between mEC and hippocampus, thus influencing the pathway for information transfer between the two regions.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
04 Jun 2009-Nature
TL;DR: The timing of a sensory input relative to a gamma cycle determined the amplitude and precision of evoked responses and provided the first causal evidence that distinct network activity states can be induced in vivo by cell-type-specific activation.
Abstract: Corticalgammaoscillations(20280Hz)predictincreasesinfocusedattention,andfailureingammaregulationisahallmark of neurological and psychiatric disease. Current theory predicts that gamma oscillations are generated by synchronous activity of fast-spiking inhibitory interneurons, with the resulting rhythmic inhibition producing neural ensemble synchrony by generating a narrow window for effective excitation. We causally tested these hypotheses in barrel cortex in vivo by targeting optogenetic manipulation selectively to fast-spiking interneurons. Here we show that light-driven activation of fast-spiking interneurons atvariedfrequencies (82200Hz) selectivelyamplifies gamma oscillations. Incontrast, pyramidal neuron activation amplifies only lower frequency oscillations, a cell-type-specific double dissociation. We found that the timing of a sensory input relative to a gamma cycle determined the amplitude and precision of evoked responses. Our data directly support the fast-spiking-gamma hypothesis and provide the first causal evidence that distinct network activity states can be induced in vivo by cell-type-specific activation.

2,453 citations

Journal ArticleDOI
Xiao Jing Wang1
TL;DR: A plethora of studies will be reviewed on the involvement of long-distance neuronal coherence in cognitive functions such as multisensory integration, working memory, and selective attention, and implications of abnormal neural synchronization are discussed as they relate to mental disorders like schizophrenia and autism.
Abstract: Synchronous rhythms represent a core mechanism for sculpting temporal coordination of neural activity in the brain-wide network. This review focuses on oscillations in the cerebral cortex that occur during cognition, in alert behaving conditions. Over the last two decades, experimental and modeling work has made great strides in elucidating the detailed cellular and circuit basis of these rhythms, particularly gamma and theta rhythms. The underlying physiological mechanisms are diverse (ranging from resonance and pacemaker properties of single cells to multiple scenarios for population synchronization and wave propagation), but also exhibit unifying principles. A major conceptual advance was the realization that synaptic inhibition plays a fundamental role in rhythmogenesis, either in an interneuronal network or in a reciprocal excitatory-inhibitory loop. Computational functions of synchronous oscillations in cognition are still a matter of debate among systems neuroscientists, in part because the notion of regular oscillation seems to contradict the common observation that spiking discharges of individual neurons in the cortex are highly stochastic and far from being clocklike. However, recent findings have led to a framework that goes beyond the conventional theory of coupled oscillators and reconciles the apparent dichotomy between irregular single neuron activity and field potential oscillations. From this perspective, a plethora of studies will be reviewed on the involvement of long-distance neuronal coherence in cognitive functions such as multisensory integration, working memory, and selective attention. Finally, implications of abnormal neural synchronization are discussed as they relate to mental disorders like schizophrenia and autism.

1,774 citations


Cites background from "NMDA receptor-dependent switching b..."

  • ...The slower frequency may be determined by a mixture of cellular and synaptic properties, including voltage- and calcium-gated potassium currents in pyramidal cells and the strength of recurrent excitatory connections (817, 1052, 1054), perhaps also involving specific subtypes of interneurons (667, 682, 758)....

    [...]

Journal ArticleDOI
TL;DR: An overview of the current state of the field of interneuron research, focusing largely on the hippocampus, discusses recent advances related to the various cell types, including their development and maturation, expression of subtype-specific voltage- and ligand-gated channels, and their roles in network oscillations.
Abstract: In the hippocampus GABAergic local circuit inhibitory interneurons represent only ~10–15% of the total neuronal population; however, their remarkable anatomical and physiological diversity allows them to regulate virtually all aspects of cellular and circuit function. Here we provide an overview of the current state of the field of interneuron research, focusing largely on the hippocampus. We discuss recent advances related to the various cell types, including their development and maturation, expression of subtype-specific voltage- and ligand-gated channels, and their roles in network oscillations. We also discuss recent technological advances and approaches that have permitted high-resolution, subtype-specific examination of their roles in numerous neural circuit disorders and the emerging therapeutic strategies to ameliorate such pathophysiological conditions. The ultimate goal of this review is not only to provide a touchstone for the current state of the field, but to help pave the way for future research by highlighting where gaps in our knowledge exist and how a complete appreciation of their roles will aid in future therapeutic strategies.

545 citations

Journal ArticleDOI
17 Sep 2014-Neuron
TL;DR: A framework for studying the brain's "dynome" and its relationship to cognition is described, which links brain connectivity with brain dynamics, as well as the biological details that relate this connectivity more directly to function.

301 citations


Cites background from "NMDA receptor-dependent switching b..."

  • ...…in different cortical layers (Oke et al., 2010; Ainsworth et al., 2012), different effects of neuromodulators on rhythms in different brain areas (Middleton et al., 2008; Roopun et al., 2008a), switches in temporal structure with changes in activation (Roopun et al., 2008b), fast rhythms nested…...

    [...]

Journal ArticleDOI
09 Jan 2013-Neuron
TL;DR: This work establishes with optogenetic activation of layer II of the medial entorhinal cortex that theta frequency drive to this circuit is sufficient to generate nested gamma frequency oscillations in synaptic activity and indicates that grid cells communicate primarily via inhibitory interneurons.

266 citations


Cites background from "NMDA receptor-dependent switching b..."

  • ...(G) Schematic indicates the slice cut to separate layers II and III (left)....

    [...]

  • ...…of nested gamma activity reported in the MEC of behaving animals (Chrobak and Buzsáki, 1998; Colgin et al., 2009) and much higher than the frequency of pharmacologically induced gamma oscillations (Cunningham et al., 2003; Dickson et al., 2000; Middleton et al., 2008; van Der Linden et al., 1999)....

    [...]

  • ...Examples of synaptic currents (row 2), corresponding scalograms (row 3), and the mean scalograms for all experiments (row 4), each plotted as a function of the phase of theta stimulation, demonstrate that nested gamma is maintained when connections between layers II and III are cut (control) and after subsequent block of NMDA receptors with 50 mM D-APV but is abolished by complete block of iGluRs....

    [...]

  • ...…pharmacological models of gamma activity in the MEC in which the frequency of excitatory drive to interneurons is less than the network gamma frequency (Cunningham et al., 2003) and in which NMDA receptor activation is required for oscillations generatedwithin layer II (Middleton et al., 2008)....

    [...]

  • ...Blocking NMDA receptors abolishes pharmacologically induced gamma activity generated locally in layer II of the MEC and reveals lower-frequency activity that originates from layer III (Middleton et al., 2008)....

    [...]

References
More filters
Journal ArticleDOI
15 Sep 2006-Science
TL;DR: The results indicate that transient coupling between low- and high-frequency brain rhythms coordinates activity in distributed cortical areas, providing a mechanism for effective communication during cognitive processing in humans.
Abstract: We observed robust coupling between the high- and low-frequency bands of ongoing electrical activity in the human brain. In particular, the phase of the low-frequency theta (4 to 8 hertz) rhythm modulates power in the high gamma (80 to 150 hertz) band of the electrocorticogram, with stronger modulation occurring at higher theta amplitudes. Furthermore, different behavioral tasks evoke distinct patterns of theta/high gamma coupling across the cortex. The results indicate that transient coupling between low- and high-frequency brain rhythms coordinates activity in distributed cortical areas, providing a mechanism for effective communication during cognitive processing in humans.

2,404 citations


"NMDA receptor-dependent switching b..." refers background in this paper

  • ...This mechanism can underlie gamma rhythms in a broad range of frequencies from around 20 Hz up to 70 Hz in the hippocampus (8) but cannot support higher frequencies such as those labeled as ‘‘high gamma’’ previously (9)....

    [...]

Journal ArticleDOI
16 Feb 1995-Nature
TL;DR: It is proposed that interneuron network oscillations, in conjunction with intrinsic membrane resonances and long-loop (such as thalamocortical) interactions, contribute to 40-Hz rhythms in vivo.
Abstract: Partially synchronous 40-Hz oscillations of cortical neurons have been implicated in cognitive function. Specifically, coherence of these oscillations between different parts of the cortex may provide conjunctive properties to solve the 'binding problem': associating features detected by the cortex into unified perceived objects. Here we report an emergent 40-Hz oscillation in networks of inhibitory neurons connected by synapses using GABAA (gamma-aminobutyric acid) receptors in slices of rat hippocampus and neocortex. These network inhibitory postsynaptic potential oscillations occur in response to the activation of metabotropic glutamate receptors. The oscillations can entrain pyramidal cell discharges. The oscillation frequency is determined both by the net excitation of interneurons and by the kinetics of the inhibitory postsynaptic potentials between them. We propose that interneuron network oscillations, in conjunction with intrinsic membrane resonances and long-loop (such as thalamocortical) interactions, contribute to 40-Hz rhythms in vivo.

1,625 citations


"NMDA receptor-dependent switching b..." refers background in this paper

  • ...The basic mechanism of generation of population gamma rhythms by local neuronal circuits reveals an absolute dependence on the influence of fast spiking inhibitory interneurons at the level of principal cell somata (5, 6),with the frequency dependent on the magnitude and kinetics of gamma aminobutyric acid (GABAA) receptor-mediated synaptic events (7)....

    [...]

Journal ArticleDOI
Anatol Bragin1, G. Jandó1, Zoltan Nadasdy1, J Hetke1, K Wise1, György Buzsáki1 
TL;DR: It is suggested that gamma oscillation emerges from an interaction between intrinsic oscillatory properties of interneurons and the network properties of the dentate gyrus and that Gamma oscillation in the CA3-CA1 circuitry is suppressed by either the hilar region or the entorhinal cortex.
Abstract: The cellular generation and spatial distribution of gamma frequency (40-100 Hz) activity was examined in the hippocampus of the awake rat. Field potentials and unit activity were recorded by multiple site silicon probes (5- and 16-site shanks) and wire electrode arrays. Gamma waves were highly coherent along the long axis of the dentate hilus, but average coherence decreased rapidly in the CA3 and CA1 directions. Analysis of short epochs revealed large fluctuations in coherence values between the dentate and CA1 gamma waves. Current source density analysis revealed large sinks and sources in the dentate gyrus with spatial distribution similar to the dipoles evoked by stimulation of the perforant path. The frequency changes of gamma and theta waves positively correlated (40-100 Hz and 5-10 Hz, respectively). Putative interneurons in the dentate gyrus discharged at gamma frequency and were phase-locked to the ascending part of the gamma waves recorded from the hilus. Following bilateral lesion of the entorhinal cortex the power and frequency of hilar gamma activity significantly decreased or disappeared. Instead, a large amplitude but slower gamma pattern (25-50 Hz) emerged in the CA3-CA1 network. We suggest that gamma oscillation emerges from an interaction between intrinsic oscillatory properties of interneurons and the network properties of the dentate gyrus. We also hypothesize that under physiological conditions the hilar gamma oscillation may be entrained by the entorhinal rhythm and that gamma oscillation in the CA3-CA1 circuitry is suppressed by either the hilar region or the entorhinal cortex.

1,529 citations


"NMDA receptor-dependent switching b..." refers background in this paper

  • ...For example, removal of entorhinal cortex in vivo produces a slower gamma rhythm (39), whose origins appear to be in area CA3 (40)....

    [...]

Journal ArticleDOI
23 Jan 2003-Neuron
TL;DR: This work examines the generation of gamma oscillation currents in the hippocampus, using two-dimensional, 96-site silicon probes and identifies two gamma generators, one in the dentate gyrus and another in the CA3-CA1 regions.

985 citations


"NMDA receptor-dependent switching b..." refers background in this paper

  • ...For example, removal of entorhinal cortex in vivo produces a slower gamma rhythm (39), whose origins appear to be in area CA3 (40)....

    [...]

Journal ArticleDOI
21 Mar 2008-Science
TL;DR: In this paper, the authors used high-resolution (1.5-millimeter isotropic voxels) functional magnetic resonance imaging to measure brain activity during incidental memory encoding.
Abstract: Pattern separation, the process of transforming similar representations or memories into highly dissimilar, nonoverlapping representations, is a key component of many functions ascribed to the hippocampus. Computational models have stressed the role of the hippocampus and, in particular, the dentate gyrus and its projections into the CA3 subregion in pattern separation. We used high-resolution (1.5-millimeter isotropic voxels) functional magnetic resonance imaging to measure brain activity during incidental memory encoding. Although activity consistent with a bias toward pattern completion was observed in CA1, the subiculum, and the entorhinal and parahippocampal cortices, activity consistent with a strong bias toward pattern separation was observed in, and limited to, the CA3/dentate gyrus. These results provide compelling evidence of a key role of the human CA3/dentate gyrus in pattern separation.

899 citations