scispace - formally typeset
Search or ask a question
Journal ArticleDOI

NMP-7 inhibits chronic inflammatory and neuropathic pain via block of Cav3.2 T-type calcium channels and activation of CB2 receptors.

06 Dec 2014-Molecular Pain (BioMed Central)-Vol. 10, Iss: 1, pp 77-77
TL;DR: This work shows that NMP-7 mediates a significant analgesic effect in a model of persistent inflammatory and chronic neuropathic pain by way of T-type channel modulation and CB2 receptor activation, and provides a novel therapeutic avenue for managing chronic pain conditions via mixed CB ligands/T-type channels.
Abstract: Background: T-type calcium channels and cannabinoid receptors are known to play important roles in chronic pain, making them attractive therapeutic targets. We recently reported on the design, synthesis and analgesic properties of a novel T-type channel inhibitor (NMP-7), which also shows mixed agonist activity on CB1 and CB2 receptors in vitro. Here, we analyzed the analgesic effect of systemically delivered NMP-7 (intraperitoneal (i.p.) or intragstric (i.g.) routes) on mechanical hypersensitivity in inflammatory pain induced by Complete Freund’s Adjuvant (CFA) and neuropathic pain induced by sciatic nerve injury. Results: NMP-7 delivered by either i.p. or i.g. routes produced dose-dependent inhibition of mechanical hyperalgesia in mouse models of inflammatory and neuropathic pain, without altering spontaneous locomotor activity in the open-field test at the highest active dose. Neither i.p. nor i.g. treatment reduced peripheral inflammation per se ,a s evaluated by examining paw edema and myeloperoxidase activity. The antinociception produced by NMP-7 in the CFA test was completely abolished in CaV3.2-null mice, confirming CaV 3.2 as ak ey target. The analgesic action of intraperitoneally delivered NMP-7 was not affected by pretreatment of mice with the CB1 antagonist AM281, but was significantly attenuated by pretreatment with the CB2 antagonist AM630, suggesting that CB2 receptors, but not CB1 receptors are involved in the action of NMP-7 in vivo. Conclusions: Overall, our work shows that NMP-7 mediates a significant analgesic effect in a model of persistent inflammatory and chronic neuropathic pain by way of T-type channel modulation and CB2 receptor activation. Thus, this study provides a novel therapeutic avenue for managing chronic pain conditions via mixed CB ligands/ T-type channel blockers.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: An overview of calcium channels as drug targets for nervous system disorders is provided, and potential challenges and opportunities for the development of new clinically effective calcium channel inhibitors are discussed.
Abstract: Voltage-gated calcium channels are important regulators of brain, heart and muscle functions, and their dysfunction can give rise to pathophysiological conditions ranging from cardiovascular disorders to neurological and psychiatric conditions such as epilepsy, pain and autism. In the nervous system, calcium channel blockers have been used successfully to treat absence seizures, and are emerging as potential therapeutic avenues for pathologies such as pain, Parkinson disease, addiction and anxiety. This Review provides an overview of calcium channels as drug targets for nervous system disorders, and discusses potential challenges and opportunities for the development of new clinically effective calcium channel inhibitors.

301 citations

Journal ArticleDOI
TL;DR: It is suggested that drugs that affect multiple processes, rather than a single specific target, show the greatest promise for future therapeutic development.
Abstract: Injury to or disease of the nervous system can invoke chronic and sometimes intractable neuropathic pain. Many parallel, interdependent, and time-dependent processes, including neuroimmune interactions at the peripheral, supraspinal, and spinal levels, contribute to the etiology of this "disease of pain." Recent work emphasizes the roles of colony-stimulating factor 1, ATP, and brain-derived neurotrophic factor. Excitatory processes are enhanced, and inhibitory processes are attenuated in the spinal dorsal horn and throughout the somatosensory system. This leads to central sensitization and aberrant processing such that tactile and innocuous thermal information is perceived as pain (allodynia). Processes involved in the onset of neuropathic pain differ from those involved in its long-term maintenance. Opioids display limited effectiveness, and less than 35% of patients derive meaningful benefit from other therapeutic approaches. We thus review promising therapeutic targets that have emerged over the last 20 years, including Na+, K+, Ca2+, hyperpolarization-activated cyclic nucleotide-gated channels, transient receptor potential channel type V1 channels, and adenosine A3 receptors. Despite this progress, the gabapentinoids retain their status as first-line treatments, yet their mechanism of action is poorly understood. We outline recent progress in understanding the etiology of neuropathic pain and show how this has provided insights into the cellular actions of pregabalin and gabapentin. Interactions of gabapentinoids with the α2δ-1 subunit of voltage-gated Ca2+ channels produce multiple and neuron type-specific actions in spinal cord and higher centers. We suggest that drugs that affect multiple processes, rather than a single specific target, show the greatest promise for future therapeutic development.

240 citations


Additional excerpts

  • ...2 channels (Berger et al., 2014)....

    [...]

Journal ArticleDOI
TL;DR: Recent developments in the discovery of novel classes of T‐type calcium channel blockers, and their analgesic effects in animal models of pain and in clinical trials are reviewed.
Abstract: Cav3.2 T-type calcium channels are important regulators of pain signals in afferent pain pathway, and their activities are dysregulated during various chronic pain states. Therefore it stands to reason that inhibiting T-type calcium channels in dorsal root ganglion neurons and in the spinal dorsal horn can be targeted for pain relief. This is supported by early pharmacological studies with T-type channel blockers such as ethosuximide, and by analgesic effects of siRNA depletion of Cav3.2 channels. In the past five years, considerable effort has been applied towards identifying novel classes of T-type calcium channel blockers. Here we review recent developments in the discovery of novel classes of T-type calcium channel blockers, and their analgesics effects in animal models of pain and in clinical trials.

86 citations


Cites background from "NMP-7 inhibits chronic inflammatory..."

  • ...More recently, a series of novel DHP derivatives with a condensed hexahydroquinoline 1,4-DHP ring system were identified (Bladen et al., 2014)....

    [...]

Journal ArticleDOI
09 Sep 2016-PLOS ONE
TL;DR: It is concluded that activation of CB2R ameliorates DSS-induced colitis through enhancing autophagy that may inhibit NLRP3 inflammasome activation in macrophages and it is demonstrated that AMPK-mTOR-P70S6K signaling pathway was involved in thisCB2R-mediated process.
Abstract: Activation of cannabinoid receptor 2 (CB2R) ameliorates inflammation, but the underlying mechanism remains unclear. In the present study, we examined whether activation of CB2R could suppress the nucleotide-binding domain and leucine-rich repeat protein 3 (NLRP3) inflammasome. In peritoneal macrophages isolated from C57BL/6 mice, LPS/DSS challenge for 24 h increased the expression of the components of NLRP3 inflammasome NLRP3, Casp-1 p20/Casp-1 p45 ratio, proIL-1β and IL-1β and also enhanced autophagy (LC3-II/LC3-I ratio, Beclin-1 and SQSTM1). Pretreatment of peritoneal macrophages with HU 308, a selective CB2R agonist, attenuated LPS/DSS-induced NLRP3 inflammasome activation, but further enhanced autophagy. In comparison with wild-type (WT) control, peritoneal macrophages from CB2R knockout (KO) mice had more robust NLRP3 inflammasome activation and attenuated autophagy upon LPS/DSS challenge. Knockdown autophagy-related gene 5 (Atg5) with a siRNA in peritoneal macrophages attenuated the inhibitory effects of HU 308 on LPS/DSS-induced NLRP3 inflammasome activation in vitro. In vivo, HU308 treatment attenuated DSS-induced colitis mice associated with reduced colon inflammation and inhibited NLRP3 inflammasome activation in wild-type mice. In CB2R KO mice, DSS-induced inflammation and NLRP3 inflammasome activation were more pronounced than those in WT control. Finally, we demonstrated that AMPK-mTOR-P70S6K signaling pathway was involved in this CB2R-mediated process. We conclude that activation of CB2R ameliorates DSS-induced colitis through enhancing autophagy that may inhibit NLRP3 inflammasome activation in macrophages.

67 citations

Journal ArticleDOI
TL;DR: The anatomical physiology, underlying mechanisms of neuropathic pain is overviewed to provide a better understanding in the initiation, development, maintenance, and modulation of this pervasive disease, and inspire research in the unclear mechanisms as well as potential targets.

46 citations


Cites background from "NMP-7 inhibits chronic inflammatory..."

  • ...2 blocker SNI model analgesic effect (Berger et al., 2014) Suramin and the flavonoid gossypetin USP5-Cav3....

    [...]

  • ...2 T-type channel blocker, was shown to mediate a significant analgesic effect in the model of neuropathic pain (Berger et al. , 2014)....

    [...]

References
More filters
Journal ArticleDOI
TL;DR: The present study elucidated the CB2 receptor expression in ‘pain relevant’ tissues and the potential sites of action of CB2 agonism in rats to elucidate the mechanisms underlying CB2‐mediated analgesic effects.
Abstract: BACKGROUND AND PURPOSE Cannabinoid CB2 receptor activation by selective agonists has been shown to produce analgesic effects in preclinical models of inflammatory and neuropathic pain. However, mechanisms underlying CB2-mediated analgesic effects remain largely unknown. The present study was conducted to elucidate the CB2 receptor expression in ‘pain relevant’ tissues and the potential sites of action of CB2 agonism in rats. EXPERIMENTAL APPROACH Expression of cannabinoid receptor mRNA was evaluated by quantitative RT-PCR in dorsal root ganglia (DRGs), spinal cords, paws and several brain regions of sham, chronic inflammatory pain (CFA) and neuropathic pain (spinal nerve ligation, SNL) rats. The sites of CB2 mediated antinociception were evaluated in vivo following intra-DRG, intrathecal (i.t.) or intraplantar (i.paw) administration of potent CB2-selective agonists A-836339 and AM1241. KEY RESULTS CB2 receptor gene expression was significantly up-regulated in DRGs (SNL and CFA), spinal cords (SNL) or paws (CFA) ipsilateral to injury under inflammatory and neuropathic pain conditions. Systemic A-836339 and AM1241 produced dose-dependent efficacy in both inflammatory and neuropathic pain models. Local administration of CB2 agonists also produced significant analgesic effects in SNL (intra-DRG and i.t.) and CFA (intra-DRG) pain models. In contrast to A-836339, i.paw administration of AM-1241 dose-relatedly reversed the CFA-induced thermal hyperalgesia, suggesting that different mechanisms may be contributing to its in vivo properties. CONCLUSIONS AND IMPLICATIONS These results demonstrate that both DRG and spinal cord are important sites contributing to CB2 receptor-mediated analgesia and that the changes in CB2 receptor expression play a crucial role for the sites of action in regulating pain perception.

124 citations


"NMP-7 inhibits chronic inflammatory..." refers background in this paper

  • ...produce analgesia in mice with peripheral nerve injuries, altogether indicating that both T-type calcium channels and CB2 receptors are important targets for treating neuropathic pain [28]....

    [...]

Journal ArticleDOI
01 Nov 2009-Diabetes
TL;DR: The results indicate that pharmacological antagonism of T-channels is potentially an important novel therapeutic approach for the management of painful diabetic neuropathy.
Abstract: OBJECTIVE Morbid obesity may be accompanied by diabetes and painful diabetic neuropathy, a poorly understood condition that is manifested by mechanical or thermal allodynia and hyperalgesia. Recent studies have highlighted the importance of T-type calcium channels (T-channels) in peripheral nociception; therefore, our goal was to examine the function of these channels in the pathophysiology and development of painful diabetic neuropathy. RESEARCH DESIGN AND METHODS In vivo testing of mechanical and thermal sensation, morphometric peripheral nerve studies, and electrophysiological and biochemical measurements were used to characterize the role of T-channels and the development of painful diabetic neuropathy in leptin-deficient ( ob/ob ) mice. RESULTS We found that ob/ob mice developed significant mechanical and thermal hypersensitivity early in life that coincided with hyperglycemia and was readily reversed with insulin therapy. These disturbances were accompanied by significant biophysical and biochemical modulation of T-channels in dorsal root ganglion neurons as measured by a large increase in the amplitude of T-currents and the expression of mRNA. The most prevalent subtype, α1H (Ca v 3.2), was most strongly affected. Moreover, (3β,5α,17β)-17-hydroxyestrane-3-carbonitrile (ECN), a novel neuroactive steroid and selective T-channel antagonist, provided dose-dependent alleviation of neuropathic thermal and mechanical hypersensitivity in diabetic ob/ob mice. CONCLUSIONS Our results indicate that pharmacological antagonism of T-channels is potentially an important novel therapeutic approach for the management of painful diabetic neuropathy.

115 citations

Journal ArticleDOI
TL;DR: It is demonstrated that simultaneous elevations in non-neuronal and neuronal endocannabinoid signaling are possible through inhibition of a single enzymatic target, thereby offering a potentially powerful strategy for treating chronic inflammatory pain syndromes that operate at multiple levels of anatomical integration.
Abstract: Although cannabinoids are efficacious in laboratory animal models of inflammatory pain, their established cannabimimetic actions diminish enthusiasm for their therapeutic development. Conversely, fatty acid amide hydrolase (FAAH), the chief catabolic enzyme regulating the endogenous cannabinoid N-arachidonoylethanolamine (anandamide), has emerged as an attractive target for treating pain and other conditions. Here, we tested WIN 55212-2 [(R)-(+)-[2,3-dihydro-5-methyl-3-(4-morpholinylmethyl)pyrrolo[1,2,3-de)-1,4-benzoxazin-6-yl]-1-napthalenylmethanone], a cannabinoid receptor agonist, and genetic deletion or pharmacological inhibition of FAAH in the lipopolysaccharide (LPS) mouse model of inflammatory pain. WIN 55212-2 significantly reduced edema and hot-plate hyperalgesia caused by LPS infusion into the hind paws, although the mice also displayed analgesia and other central nervous system effects. FAAH(−/−) mice exhibited reduced paw edema and hyperalgesia in this model without apparent cannabimimetic effects. Transgenic mice expressing FAAH exclusively on neurons continued to display the antiedematous, but not the antihyperalgesic, phenotype. The CB2 cannabinoid receptor (CB2) antagonist SR144528 [N-[(1S)-endo-1,3,3-trimethyl bicyclo [2.2.1] heptan-2-yl]-5-(4-chloro-3-methylphenyl)-1-(4-methylbenzyl)-pyrazole-3-carboxamide] blocked this non-neuronal, anti-inflammatory phenotype, and the CB1 cannabinoid receptor (CB1) antagonist rimonabant [SR141716, N-(piperidin-1-yl)-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide] blocked the antihyperalgesic phenotype. The FAAH inhibitor URB597 [cyclohexylcarbamic acid 3′-carbamoylbiphenyl-3-yl ester] attenuated the development of LPS-induced paw edema and reversed LPS-induced hyperalgesia through the respective CB2 and CB1 mechanisms of action. However, the transient receptor potential vanilloid type 1 antagonist capsazepine did not affect either the antihyperalgesic or antiedematous effects of URB597. Finally, URB597 attenuated levels of the proinflammatory cytokines interleukin-1β and tumor necrosis factor α in LPS-treated paws. These findings demonstrate that simultaneous elevations in non-neuronal and neuronal endocannabinoid signaling are possible through inhibition of a single enzymatic target, thereby offering a potentially powerful strategy for treating chronic inflammatory pain syndromes that operate at multiple levels of anatomical integration.

111 citations


"NMP-7 inhibits chronic inflammatory..." refers methods in this paper

  • ...To investigate the extent of CB2 receptor involvement, the CB2 antagonist AM630 was delivered 15 minutes prior to NMP-7 treatment or URB597 treatment, which was used as a positive control....

    [...]

  • ...%) and PBS. Selective CB1 antagonist AM281, irreversible inhibitor of monoacylglycerol lipase JZL184 [32,33], selective CB2 antagonist AM630, and the irreversible inhibitor of fatty acid amide hydrolase URB597 [34] were provided by Cayman Chemical, and dissolved in phosphate buffered saline (PBS) and dimethyl sulfoxide (DMSO) to 5%....

    [...]

  • ...AM630 also reversed the analgesic effect of URB597 (10 mg/kg, i.p., an inhibitor of fatty acid amide hydrolase, the primary degradatory enzyme for the endocannabinoid anandamide), which was used as positive control (Two-way ANOVA, p 0.01) (Figure 6A)....

    [...]

  • ...Selective CB1 antagonist AM281, irreversible inhibitor of monoacylglycerol lipase JZL184 [32,33], selective CB2 antagonist AM630, and the irreversible inhibitor of fatty acid amide hydrolase URB597 [34] were provided by Cayman Chemical, and dissolved in phosphate buffered saline (PBS) and dimethyl sulfoxide (DMSO) to 5%....

    [...]

Journal ArticleDOI
TL;DR: Systemic injections of mibefradil, in clinically relevant doses, induced mechanical and thermal antinociception in adult rats without compromising their sensorimotor abilities, suggesting that peripherally acting T-type Ca(2+) channel blockers can be useful ant inociceptive agents.

110 citations


"NMP-7 inhibits chronic inflammatory..." refers background in this paper

  • ...knockdown [7,8] or inhibition of the T-type calcium channel by T-type channel modulators produce significant antinociceptive effects in vivo [9-13]....

    [...]

  • ...Inhibition of T-type channels or in vivo antisense-mediated knockdown produces antinociception in these and other models of chronic pain [7-16]....

    [...]

Journal ArticleDOI
TL;DR: It is demonstrated here that lipoamino acids NAGly and NAGABA-OH produced a strong thermal analgesia and that these effects were abolished in Cav3.2 knock-out mice, suggesting that these ligands can modulate multiple cell functions via this newly evidenced regulation.
Abstract: Lipoamino acids are anandamide-related endogenous molecules that induce analgesia via unresolved mechanisms. Here, we provide evidence that the T-type/Cav3 calcium channels are important pharmacological targets underlying their physiological effects. Various lipoamino acids, including N-arachidonoyl glycine (NAGly), reversibly inhibited Cav3.1, Cav3.2, and Cav3.3 currents, with potent effects on Cav3.2 [EC50 ∼200 nm for N-arachidonoyl 3-OH-γ-aminobutyric acid (NAGABA-OH)]. This inhibition involved a large shift in the Cav3.2 steady-state inactivation and persisted during fatty acid amide hydrolase (FAAH) inhibition as well as in cell-free outside-out patch. In contrast, lipoamino acids had weak effects on high-voltage-activated (HVA) Cav1.2 and Cav2.2 calcium currents, on Nav1.7 and Nav1.8 sodium currents, and on anandamide-sensitive TRPV1 and TASK1 currents. Accordingly, lipoamino acids strongly inhibited native Cav3.2 currents in sensory neurons with small effects on sodium and HVA calcium currents. In addition, we demonstrate here that lipoamino acids NAGly and NAGABA-OH produced a strong thermal analgesia and that these effects (but not those of morphine) were abolished in Cav3.2 knock-out mice. Collectively, our data revealed lipoamino acids as a family of endogenous T-type channel inhibitors, suggesting that these ligands can modulate multiple cell functions via this newly evidenced regulation.

107 citations

Related Papers (5)