scispace - formally typeset
Open AccessJournal ArticleDOI

No-Reference Screen Content Image Quality Assessment With Unsupervised Domain Adaptation

Reads0
Chats0
TLDR
Zhang et al. as discussed by the authors developed the first unsupervised domain adaptation based no reference quality assessment method for SCIs, leveraging rich subjective ratings of the natural images (NIs).
Abstract
In this paper, we quest the capability of transferring the quality of natural scene images to the images that are not acquired by optical cameras (e.g., screen content images, SCIs), rooted in the widely accepted view that the human visual system has adapted and evolved through the perception of natural environment. Here, we develop the first unsupervised domain adaptation based no reference quality assessment method for SCIs, leveraging rich subjective ratings of the natural images (NIs). In general, it is a non-trivial task to directly transfer the quality prediction model from NIs to a new type of content (i.e., SCIs) that holds dramatically different statistical characteristics. Inspired by the transferability of pair-wise relationship, the proposed quality measure operates based on the philosophy of improving the transferability and discriminability simultaneously. In particular, we introduce three types of losses which complementarily and explicitly regularize the feature space of ranking in a progressive manner. Regarding feature discriminatory capability enhancement, we propose a center based loss to rectify the classifier and improve its prediction capability not only for source domain (NI) but also the target domain (SCI). For feature discrepancy minimization, the maximum mean discrepancy (MMD) is imposed on the extracted ranking features of NIs and SCIs. Furthermore, to further enhance the feature diversity, we introduce the correlation penalization between different feature dimensions, leading to the features with lower rank and higher diversity. Experiments show that our method can achieve higher performance on different source-target settings based on a light-weight convolution neural network. The proposed method also sheds light on learning quality assessment measures for unseen application-specific content without the cumbersome and costing subjective evaluations.

read more

Citations
More filters
Posted Content

Learning from Synthetic Data for Opinion-free Blind Image Quality Assessment in the Wild.

TL;DR: Zhang et al. as discussed by the authors proposed an unsupervised domain adaptation (UDA) module to alleviate the domain shift between the synthetically-and authentically-distorted images.
Posted Content

No-Reference Image Quality Assessment by Hallucinating Pristine Features.

TL;DR: Zhang et al. as mentioned in this paper proposed a no-reference image quality assessment (IQA) method via feature level pseudo-reference hallucination, which is based on the prior models of natural image statistical behaviors and rooted in the view that the perceptually meaningful features could be well exploited to characterize the visual quality.
References
More filters
Proceedings ArticleDOI

Deep Residual Learning for Image Recognition

TL;DR: In this article, the authors proposed a residual learning framework to ease the training of networks that are substantially deeper than those used previously, which won the 1st place on the ILSVRC 2015 classification task.
Proceedings Article

Very Deep Convolutional Networks for Large-Scale Image Recognition

TL;DR: This work investigates the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting using an architecture with very small convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers.
Journal ArticleDOI

Image quality assessment: from error visibility to structural similarity

TL;DR: In this article, a structural similarity index is proposed for image quality assessment based on the degradation of structural information, which can be applied to both subjective ratings and objective methods on a database of images compressed with JPEG and JPEG2000.
Journal ArticleDOI

Bagging predictors

Leo Breiman
TL;DR: Tests on real and simulated data sets using classification and regression trees and subset selection in linear regression show that bagging can give substantial gains in accuracy.
Journal ArticleDOI

Representation Learning: A Review and New Perspectives

TL;DR: Recent work in the area of unsupervised feature learning and deep learning is reviewed, covering advances in probabilistic models, autoencoders, manifold learning, and deep networks.
Related Papers (5)