scispace - formally typeset
Search or ask a question
Journal ArticleDOI

NOD2-mediated dysbiosis predisposes mice to transmissible colitis and colorectal cancer

TL;DR: It is shown that dysbiosis caused by Nod2 deficiency gives rise to a reversible, communicable risk of colitis and colitis-associated carcinogenesis in mice, and manipulation of dysbiotic microbiota is a potential therapeutic approach in the treatment of human intestinal disorders.
Abstract: Instability in the composition of gut bacterial communities (dysbiosis) has been linked to common human intestinal disorders, such as Crohn’s disease and colorectal cancer. Here, we show that dysbiosis caused by Nod2 deficiency gives rise to a reversible, communicable risk of colitis and colitis-associated carcinogenesis in mice. Loss of either Nod2 or RIP2 resulted in a proinflammatory microenvironment that enhanced epithelial dysplasia following chemically induced injury. The condition could be improved by treatment with antibiotics or an anti–interleukin-6 receptor–neutralizing antibody. Genotype-dependent disease risk was communicable via maternally transmitted microbiota in both Nod2-deficient and WT hosts. Furthermore, reciprocal microbiota transplantation reduced disease risk in Nod2-deficient mice and led to long-term changes in intestinal microbial communities. Conversely, disease risk was enhanced in WT hosts that were recolonized with dysbiotic fecal microbiota from Nod2-deficient mice. Thus, we demonstrated that licensing of dysbiotic microbiota is a critical component of disease risk. Our results demonstrate that NOD2 has an unexpected role in shaping a protective assembly of gut bacterial communities and suggest that manipulation of dysbiosis is a potential therapeutic approach in the treatment of human intestinal disorders.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: Understanding the interaction of the microbiota with pathogens and the host might provide new insights into the pathogenesis of disease, as well as novel avenues for preventing and treating intestinal and systemic disorders.
Abstract: The mammalian intestine is colonized by trillions of microorganisms, most of which are bacteria that have co-evolved with the host in a symbiotic relationship. The collection of microbial populations that reside on and in the host is commonly referred to as the microbiota. A principal function of the microbiota is to protect the intestine against colonization by exogenous pathogens and potentially harmful indigenous microorganisms via several mechanisms, which include direct competition for limited nutrients and the modulation of host immune responses. Conversely, pathogens have developed strategies to promote their replication in the presence of competing microbiota. Breakdown of the normal microbial community increases the risk of pathogen infection, the overgrowth of harmful pathobionts and inflammatory disease. Understanding the interaction of the microbiota with pathogens and the host might provide new insights into the pathogenesis of disease, as well as novel avenues for preventing and treating intestinal and systemic disorders.

1,653 citations

Journal ArticleDOI
TL;DR: It is proposed that understanding this microbial influence will be crucial for targeted therapy in modern cancer treatment and the recently suggested role of commensal microorganisms in inflammation-induced cancer is discussed.
Abstract: Inflammation is a fundamental innate immune response to perturbed tissue homeostasis. Chronic inflammatory processes affect all stages of tumour development as well as therapy. In this Review, we outline the principal cellular and molecular pathways that coordinate the tumour-promoting and tumour-antagonizing effects of inflammation and we discuss the crosstalk between cancer development and inflammatory processes. In addition, we discuss the recently suggested role of commensal microorganisms in inflammation-induced cancer and we propose that understanding this microbial influence will be crucial for targeted therapy in modern cancer treatment.

1,456 citations

Journal ArticleDOI
07 Jul 2016-Nature
TL;DR: The intestinal microbiome is a signalling hub that integrates environmental inputs, such as diet, with genetic and immune signals to affect the host's metabolism, immunity and response to infection.
Abstract: The intestinal microbiome is a signalling hub that integrates environmental inputs, such as diet, with genetic and immune signals to affect the host's metabolism, immunity and response to infection. The haematopoietic and non-haematopoietic cells of the innate immune system are located strategically at the host-microbiome interface. These cells have the ability to sense microorganisms or their metabolic products and to translate the signals into host physiological responses and the regulation of microbial ecology. Aberrations in the communication between the innate immune system and the gut microbiota might contribute to complex diseases.

1,323 citations

Journal ArticleDOI
TL;DR: In this paper, the authors discuss links between the bacterial microbiota and cancer, with a particular focus on immune responses, dysbiosis, genotoxicity, metabolism and strategies to target the microbiome for cancer prevention.
Abstract: Microbiota and host form a complex 'super-organism' in which symbiotic relationships confer benefits to the host in many key aspects of life. However, defects in the regulatory circuits of the host that control bacterial sensing and homeostasis, or alterations of the microbiome, through environmental changes (infection, diet or lifestyle), may disturb this symbiotic relationship and promote disease. Increasing evidence indicates a key role for the bacterial microbiota in carcinogenesis. In this Opinion article, we discuss links between the bacterial microbiota and cancer, with a particular focus on immune responses, dysbiosis, genotoxicity, metabolism and strategies to target the microbiome for cancer prevention.

1,202 citations

Journal ArticleDOI
TL;DR: This Review categorizes dysbiosis in conceptual terms and provides an overview of immunological associations; the causes and consequences of bacterial Dysbiosis, and their involvement in the molecular aetiology of common diseases; and implications for the rational design of new therapeutic approaches.
Abstract: Throughout the past century, we have seen the emergence of a large number of multifactorial diseases, including inflammatory, autoimmune, metabolic, neoplastic and neurodegenerative diseases, many of which have been recently associated with intestinal dysbiosis - that is, compositional and functional alterations of the gut microbiome. In linking the pathogenesis of common diseases to dysbiosis, the microbiome field is challenged to decipher the mechanisms involved in the de novo generation and the persistence of dysbiotic microbiome configurations, and to differentiate causal host-microbiome associations from secondary microbial changes that accompany disease course. In this Review, we categorize dysbiosis in conceptual terms and provide an overview of immunological associations; the causes and consequences of bacterial dysbiosis, and their involvement in the molecular aetiology of common diseases; and implications for the rational design of new therapeutic approaches. A molecular- level understanding of the origins of dysbiosis, its endogenous and environmental regulatory processes, and its downstream effects may enable us to develop microbiome-targeting therapies for a multitude of common immune-mediated diseases.

945 citations

References
More filters
Journal ArticleDOI
12 May 2011-Nature
TL;DR: Three robust clusters (referred to as enterotypes hereafter) are identified that are not nation or continent specific and confirmed in two published, larger cohorts, indicating that intestinal microbiota variation is generally stratified, not continuous.
Abstract: Our knowledge of species and functional composition of the human gut microbiome is rapidly increasing, but it is still based on very few cohorts and little is known about variation across the world. By combining 22 newly sequenced faecal metagenomes of individuals from four countries with previously published data sets, here we identify three robust clusters (referred to as enterotypes hereafter) that are not nation or continent specific. We also confirmed the enterotypes in two published, larger cohorts, indicating that intestinal microbiota variation is generally stratified, not continuous. This indicates further the existence of a limited number of well-balanced host-microbial symbiotic states that might respond differently to diet and drug intake. The enterotypes are mostly driven by species composition, but abundant molecular functions are not necessarily provided by abundant species, highlighting the importance of a functional analysis to understand microbial communities. Although individual host properties such as body mass index, age, or gender cannot explain the observed enterotypes, data-driven marker genes or functional modules can be identified for each of these host properties. For example, twelve genes significantly correlate with age and three functional modules with the body mass index, hinting at a diagnostic potential of microbial markers.

5,566 citations

Journal ArticleDOI
31 May 2001-Nature
TL;DR: It is suggested that the NOD2 gene product confers susceptibility to Crohn's disease by altering the recognition of these components and/or by over-activating NF-kB in monocytes, thus documenting a molecular model for the pathogenic mechanism of Crohn’s disease that can now be further investigated.
Abstract: Crohn's disease and ulcerative colitis, the two main types of chronic inflammatory bowel disease, are multifactorial conditions of unknown aetiology A susceptibility locus for Crohn's disease has been mapped to chromosome 16 Here we have used a positional-cloning strategy, based on linkage analysis followed by linkage disequilibrium mapping, to identify three independent associations for Crohn's disease: a frameshift variant and two missense variants of NOD2, encoding a member of the Apaf-1/Ced-4 superfamily of apoptosis regulators that is expressed in monocytes These NOD2 variants alter the structure of either the leucine-rich repeat domain of the protein or the adjacent region NOD2 activates nuclear factor NF-kB; this activating function is regulated by the carboxy-terminal leucine-rich repeat domain, which has an inhibitory role and also acts as an intracellular receptor for components of microbial pathogens These observations suggest that the NOD2 gene product confers susceptibility to Crohn's disease by altering the recognition of these components and/or by over-activating NF-kB in monocytes, thus documenting a molecular model for the pathogenic mechanism of Crohn's disease that can now be further investigated

5,388 citations

Journal ArticleDOI
31 May 2001-Nature
TL;DR: It is shown that a frameshift mutation caused by a cytosine insertion, 3020insC, which is expected to encode a truncated NOD2 protein, is associated with Crohn's disease, and a link between an innate immune response to bacterial components and development of disease is suggested.
Abstract: Crohn's disease is a chronic inflammatory disorder of the gastrointestinal tract, which is thought to result from the effect of environmental factors in a genetically predisposed host. A gene location in the pericentromeric region of chromosome 16, IBD1, that contributes to susceptibility to Crohn's disease has been established through multiple linkage studies, but the specific gene(s) has not been identified. NOD2, a gene that encodes a protein with homology to plant disease resistance gene products is located in the peak region of linkage on chromosome 16 (ref. 7). Here we show, by using the transmission disequilibium test and case-control analysis, that a frameshift mutation caused by a cytosine insertion, 3020insC, which is expected to encode a truncated NOD2 protein, is associated with Crohn's disease. Wild-type NOD2 activates nuclear factor NF-kappaB, making it responsive to bacterial lipopolysaccharides; however, this induction was deficient in mutant NOD2. These results implicate NOD2 in susceptibility to Crohn's disease, and suggest a link between an innate immune response to bacterial components and development of disease.

4,838 citations

Journal ArticleDOI
25 Mar 2005-Science
TL;DR: New studies are revealing how the gut microbiota has coevolved with us and how it manipulates and complements the authors' biology in ways that are mutually beneficial.
Abstract: The distal human intestine represents an anaerobic bioreactor programmed with an enormous population of bacteria, dominated by relatively few divisions that are highly diverse at the strain/subspecies level. This microbiota and its collective genomes (microbiome) provide us with genetic and metabolic attributes we have not been required to evolve on our own, including the ability to harvest otherwise inaccessible nutrients. New studies are revealing how the gut microbiota has coevolved with us and how it manipulates and complements our biology in ways that are mutually beneficial. We are also starting to understand how certain keystone members of the microbiota operate to maintain the stability and functional adaptability of this microbial organ.

4,526 citations

Journal ArticleDOI
21 Jan 2011-Science
TL;DR: Oral inoculation of Clostridium during the early life of conventionally reared mice resulted in resistance to colitis and systemic immunoglobulin E responses in adult mice, suggesting a new therapeutic approach to autoimmunity and allergy.
Abstract: CD4+ T regulatory cells (Tregs), which express the Foxp3 transcription factor, play a critical role in the maintenance of immune homeostasis. Here, we show that in mice, Tregs were most abundant in the colonic mucosa. The spore-forming component of indigenous intestinal microbiota, particularly clusters IV and XIVa of the genus Clostridium, promoted Treg cell accumulation. Colonization of mice by a defined mix of Clostridium strains provided an environment rich in transforming growth factor–β and affected Foxp3+ Treg number and function in the colon. Oral inoculation of Clostridium during the early life of conventionally reared mice resulted in resistance to colitis and systemic immunoglobulin E responses in adult mice, suggesting a new therapeutic approach to autoimmunity and allergy.

3,096 citations

Related Papers (5)
01 Nov 2012-Nature
Luke Jostins, Stephan Ripke, Rinse K. Weersma, Richard H. Duerr, Dermot P.B. McGovern, Ken Y. Hui, James Lee, L. Philip Schumm, Yashoda Sharma, Carl A. Anderson, Jonah Essers, Mitja Mitrovic, Kaida Ning, Isabelle Cleynen, Emilie Theatre, Sarah L. Spain, Soumya Raychaudhuri, Philippe Goyette, Zhi Wei, Clara Abraham, Jean-Paul Achkar, Tariq Ahmad, Leila Amininejad, Ashwin N. Ananthakrishnan, Vibeke Andersen, Jane M. Andrews, Leonard Baidoo, Tobias Balschun, Peter A. Bampton, Alain Bitton, Gabrielle Boucher, Stephan Brand, Carsten Büning, Ariella Cohain, Sven Cichon, Mauro D'Amato, Dirk De Jong, Kathy L Devaney, Marla Dubinsky, Cathryn Edwards, David Ellinghaus, Lynnette R. Ferguson, Denis Franchimont, Karin Fransen, Richard B. Gearry, Michel Georges, Christian Gieger, Jürgen Glas, Talin Haritunians, Ailsa Hart, Christopher J. Hawkey, Matija Hedl, Xinli Hu, Tom H. Karlsen, Limas Kupčinskas, Subra Kugathasan, Anna Latiano, Debby Laukens, Ian C. Lawrance, Charlie W. Lees, Edouard Louis, Gillian Mahy, John C. Mansfield, Angharad R. Morgan, Craig Mowat, William G. Newman, Orazio Palmieri, Cyriel Y. Ponsioen, Uroš Potočnik, Natalie J. Prescott, Miguel Regueiro, Jerome I. Rotter, Richard K Russell, Jeremy D. Sanderson, Miquel Sans, Jack Satsangi, Stefan Schreiber, Lisa A. Simms, Jurgita Sventoraityte, Stephan R. Targan, Kent D. Taylor, Mark Tremelling, Hein W. Verspaget, Martine De Vos, Cisca Wijmenga, David C. Wilson, Juliane Winkelmann, Ramnik J. Xavier, Sebastian Zeissig, Bin Zhang, Clarence K. Zhang, Hongyu Zhao, Mark S. Silverberg, Vito Annese, Hakon Hakonarson, Steven R. Brant, Graham L. Radford-Smith, Christopher G. Mathew, John D. Rioux, Eric E. Schadt, Mark J. Daly, Andre Franke, Miles Parkes, Severine Vermeire, Jeffrey C. Barrett, Judy H. Cho