scispace - formally typeset
Search or ask a question
Book

Noise in solid state devices and circuits

TL;DR: In this paper, the authors propose a method to generate 1/f noise noise in particular Amplifier Circuits Mixers by using thermal noise shot and flicker noise, respectively.
Abstract: Mathematical Methods Noise Characterization Noise Measurements Thermal Noise Shot Noise Generation - Recombination Noise Flicker Noise or 1/f Noise Noise in Particular Amplifier Circuits Mixers Miscellaneous Problems Appendixes Index.
Citations
More filters
Journal ArticleDOI
TL;DR: In this article, a 1.5 GHz low noise amplifier (LNA) intended for use in a global positioning system (GPS) receiver, has been implemented in a standard 0.6/spl mu/m CMOS process.
Abstract: A 1.5-GHz low noise amplifier (LNA), intended for use in a global positioning system (GPS) receiver, has been implemented in a standard 0.6-/spl mu/m CMOS process. The amplifier provides a forward gain (S21) of 22 dB with a noise figure of only 3.5 dB while drawing 30 mW from a 1.5 V supply. In this paper, we present a detailed analysis of the LNA architecture, including a discussion on the effects of induced gate noise in MOS devices.

1,463 citations

Journal ArticleDOI
TL;DR: In this paper, a review of the thermal properties of mesoscopic structures is presented based on the concept of electron energy distribution, and, in particular, on controlling and probing it, and an immediate application of solidstate refrigeration and thermometry is in ultrasensitive radiation detection, which is discussed in depth.
Abstract: This review presents an overview of the thermal properties of mesoscopic structures. The discussion is based on the concept of electron energy distribution, and, in particular, on controlling and probing it. The temperature of an electron gas is determined by this distribution: refrigeration is equivalent to narrowing it, and thermometry is probing its convolution with a function characterizing the measuring device. Temperature exists, strictly speaking, only in quasiequilibrium in which the distribution follows the Fermi-Dirac form. Interesting nonequilibrium deviations can occur due to slow relaxation rates of the electrons, e.g., among themselves or with lattice phonons. Observation and applications of nonequilibrium phenomena are also discussed. The focus in this paper is at low temperatures, primarily below $4\phantom{\rule{0.3em}{0ex}}\mathrm{K}$, where physical phenomena on mesoscopic scales and hybrid combinations of various types of materials, e.g., superconductors, normal metals, insulators, and doped semiconductors, open up a rich variety of device concepts. This review starts with an introduction to theoretical concepts and experimental results on thermal properties of mesoscopic structures. Then thermometry and refrigeration are examined with an emphasis on experiments. An immediate application of solid-state refrigeration and thermometry is in ultrasensitive radiation detection, which is discussed in depth. This review concludes with a summary of pertinent fabrication methods of presented devices.

984 citations

Proceedings ArticleDOI
13 Jun 1996
TL;DR: In this paper, a 1.5 GHz low noise amplifier for a Global Positioning System (GPS) receiver has been implemented in a 0.6 /spl mu/m CMOS process.
Abstract: A 1.5 GHz low noise amplifier for a Global Positioning System (GPS) receiver has been implemented in a 0.6 /spl mu/m CMOS process. This amplifier provides a forward gain of 22 dB with a noise figure of only 3.5 dB while drawing 30 mW from a 1.5 V supply. To the authors' knowledge, this represents the lowest noise figure reported to date for a CMOS amplifier operating above 1 GHz.

558 citations


Cites background or methods from "Noise in solid state devices and ci..."

  • ...(a) Standard representation, as found in [20]....

    [...]

  • ...Contours of constant noise figure relating and PD , for L = 0:35 m; Rs = 50 ; !0 = 10 Grps, Vdd = 1:5 V, = 2:5 [1], = 5:0; jcj = 0:395 [20], sat = 1 10 m/s, and "sat = 4:7 10 V/m [22]....

    [...]

  • ...Although absent from most (if not all) texts on CMOS circuit design, gate noise is given detailed treatment by van der Ziel [20]....

    [...]

  • ...The gate noise is partially correlated with the drain noise, with a correlation coefficient given by [20]...

    [...]

  • ...4 Our notation differs slightly from that found in [20], in which is used in place of ....

    [...]

Journal ArticleDOI
TL;DR: In this article, four reported low-noise amplifier (LNA) design techniques applied to the cascode topology based on CMOS technology are reviewed and analyzed: classical noise matching, simultaneous noise and input matching (SNIM), power-constrained noise optimization, and power-consistency with SNIM (PCSNIM) techniques.
Abstract: This paper reviews and analyzes four reported low-noise amplifier (LNA) design techniques applied to the cascode topology based on CMOS technology: classical noise matching, simultaneous noise and input matching (SNIM), power-constrained noise optimization, and power-constrained simultaneous noise and input matching (PCSNIM) techniques. Very simple and insightful sets of noise parameter expressions are newly introduced for the SNIM and PCSNIM techniques. Based on the noise parameter equations, this paper provides clear understanding of the design principles, fundamental limitations, and advantages of the four reported LNA design techniques so that the designers can get the overall LNA design perspective. As a demonstration for the proposed design principle of the PCSNIM technique, a very low-power folded-cascode LNA is implemented based on 0.25-/spl mu/m CMOS technology for 900-MHz Zigbee applications. Measurement results show the noise figure of 1.35 dB, power gain of 12 dB, and input third-order intermodulation product of -4dBm while dissipating 1.6 mA from a 1.25-V supply (0.7 mA for the input NMOS transistor only). The overall behavior of the implemented LNA shows good agreement with theoretical predictions.

542 citations


Cites background or methods from "Noise in solid state devices and ci..."

  • ...Like , the value of also increases in shortchannel devices and at high and . Since the gate-induced noise current has a correlation with the channel noise current, a correlation coefficient is defined as follows [ 9 ]:...

    [...]

  • ...With technology scaling, the ratio stays nearly constant at 2 [3], [ 9 ], becomes lower than 1 [28], and is slightly higher than 0.4 (e.g., with 0.25- m technology [29]), such that the constant is expected to become closer to 1. Therefore, from (13) and (14), it can be seen that the inductive source degeneration helps to bring the point close to the optimum source impedance point while causing no degradation in and . This characteristic ......

    [...]

  • ...In Fig. 1(b), represents the mean-squared channel thermal noise current, which is given by [ 9 ]...

    [...]

  • ...With long channel devices, can be predicted theoretically as [ 9 ]....

    [...]

  • ...As in [ 9 ], the mean-squared gateinduced noise current is given by...

    [...]

Journal ArticleDOI
TL;DR: A systematic way to design concurrent multiband integrated LNAs in general is developed and experimental results of a dual-band LNA implemented in a 0.35-/spl mu/m CMOS technology are presented.
Abstract: The concept of concurrent multiband low-noise-amplifiers (LNAs) is introduced. A systematic way to design concurrent multiband integrated LNAs in general is developed. Applications of concurrent multiband LNAs in concurrent multiband receivers together with receiver architecture are discussed. Experimental results of a dual-band LNA implemented in a 0.35-/spl mu/m CMOS technology as a demonstration of the concept and theory is presented.

503 citations