scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Noise-Induced Cochlear Damage Involves PPAR Down-Regulation through the Interplay between Oxidative Stress and Inflammation.

TL;DR: In this article, the authors used an in vivo model of noise-induced hearing loss to investigate how oxidative stress and inflammation participate in cochlear dysfunction through PPAR signaling pathways.
Abstract: The cross-talk between oxidative stress and inflammation seems to play a key role in noise-induced hearing loss. Several studies have addressed the role of PPAR receptors in mediating antioxidant and anti-inflammatory effects and, although its protective activity has been demonstrated in several tissues, less is known about how PPARs could be involved in cochlear dysfunction induced by noise exposure. In this study, we used an in vivo model of noise-induced hearing loss to investigate how oxidative stress and inflammation participate in cochlear dysfunction through PPAR signaling pathways. Specifically, we found a progressive decrease in PPAR expression in the cochlea after acoustic trauma, paralleled by an increase in oxidative stress and inflammation. By comparing an antioxidant (Q-ter) and an anti-inflammatory (Anakinra) treatment, we demonstrated that oxidative stress is the primary element of damage in noise-induced cochlear injury and that increased inflammation can be considered a consequence of PPAR down-regulation induced by ROS production. Indeed, by decreasing oxidative stress, PPARs returned to control values, reactivating the negative control on inflammation in a feedback loop.
Citations
More filters
Journal ArticleDOI
TL;DR: The focus of this review is current aspects of preserving residual hearing through a summary of recent trends regarding surgical and pharmacological fundamentals, and the assessment of new pharmacological options, novel bioactive molecules, nanoparticles, stem cells, and gene therapy.
Abstract: Hearing loss is the most common neurosensory disorder, and with the constant increase in etiological factors, combined with early detection protocols, numbers will continue to rise. Cochlear implantation has become the gold standard for patients with severe hearing loss, and interest has shifted from implantation principles to the preservation of residual hearing following the procedure itself. As the audiological criteria for cochlear implant eligibility have expanded to include patients with good residual hearing, more attention is focused on complementary development of otoprotective agents, electrode design, and surgical approaches. The focus of this review is current aspects of preserving residual hearing through a summary of recent trends regarding surgical and pharmacological fundamentals. Subsequently, the assessment of new pharmacological options, novel bioactive molecules (neurotrophins, growth factors, etc.), nanoparticles, stem cells, and gene therapy are discussed.

4 citations

Journal ArticleDOI
TL;DR: In this paper , the authors focused on redox status imbalance as a possible common pathological mechanism linking hearing and cognitive dysfunctions, and they reviewed experimental evidence suggesting that redox imbalance is a key pathogenetic factor underlying the association between sensorineural hearing loss and neurodegenerative diseases.
Abstract: Experimental and clinical data suggest a tight link between hearing and cognitive functions under both physiological and pathological conditions. Indeed, hearing perception requires high-level cognitive processes, and its alterations have been considered a risk factor for cognitive decline. Thus, identifying common pathogenic determinants of hearing loss and neurodegenerative disease is challenging. Here, we focused on redox status imbalance as a possible common pathological mechanism linking hearing and cognitive dysfunctions. Oxidative stress plays a critical role in cochlear damage occurring during aging, as well as in that induced by exogenous factors, including noise. At the same time, increased oxidative stress in medio-temporal brain regions, including the hippocampus, is a hallmark of neurodegenerative disorders like Alzheimer’s disease. As such, antioxidant therapy seems to be a promising approach to prevent and/or counteract both sensory and cognitive neurodegeneration. Here, we review experimental evidence suggesting that redox imbalance is a key pathogenetic factor underlying the association between sensorineural hearing loss and neurodegenerative diseases. A greater understanding of the pathophysiological mechanisms shared by these two diseased conditions will hopefully provide relevant information to develop innovative and effective therapeutic strategies.

3 citations

Journal ArticleDOI
TL;DR: Overall, the data demonstrate that Cx30 deletion can be considered a genetic risk factor for ARHL, making cochlear structures more susceptible to aging processes.
Abstract: Pathogenic mutations in the Gjb2 and Gjb6 genes, encoding connexin 26 (Cx26) and connexin 30 (Cx30), respectively, have been linked to the most frequent monogenic hearing impairment, nonsyndromic hearing loss, and deafness DFNB1. It is known that Cx26 plays an important role in auditory development, while the role of Cx30 in hearing remains controversial. Previous studies found that partial deletion of Cx26 can accelerate age-related hearing loss (ARHL), a multifactorial complex disorder, with both environmental and genetic factors contributing to the etiology of the disease. Here, we investigated the role of Cx30 in cochlear-aging processes using a transgenic mouse model with total deletion of Cx30 (Cx30 ΔΔ mice), in which Cx30 was removed without perturbing the surrounding sequences. We show that these mice are affected by exacerbated ARHL, with increased morphological cochlear damage, oxidative stress, inflammation, and vascular dysfunctions. Overall, our data demonstrate that Cx30 deletion can be considered a genetic risk factor for ARHL, making cochlear structures more susceptible to aging processes.

2 citations

Journal ArticleDOI
TL;DR: In this paper , the authors provide an overview of the current knowledge on the role of mitochondrial dysfunction and oxidative stress in the development of sensorineural hearing loss caused by genetic mutations, aging, exposure to excessive noise, and ototoxic drugs.

2 citations

Journal ArticleDOI
TL;DR: In this article , the authors provide an overview of the current knowledge on the role of mitochondrial dysfunction and oxidative stress in the development of sensorineural hearing loss caused by genetic mutations, aging, exposure to excessive noise, and ototoxic drugs.

1 citations

References
More filters
Journal ArticleDOI
TL;DR: This review will discuss the activation and function of NF-κB in association with inflammatory diseases and highlight the development of therapeutic strategies based on NF-σB inhibition.
Abstract: The transcription factor NF-κB regulates multiple aspects of innate and adaptive immune functions and serves as a pivotal mediator of inflammatory responses. NF-κB induces the expression of various pro-inflammatory genes, including those encoding cytokines and chemokines, and also participates in inflammasome regulation. In addition, NF-κB plays a critical role in regulating the survival, activation and differentiation of innate immune cells and inflammatory T cells. Consequently, deregulated NF-κB activation contributes to the pathogenic processes of various inflammatory diseases. In this review, we will discuss the activation and function of NF-κB in association with inflammatory diseases and highlight the development of therapeutic strategies based on NF-κB inhibition.

4,110 citations

Journal ArticleDOI
TL;DR: An overview of established NF-kappaB signaling pathways is provided with focus on the current state of research into the mechanisms that regulate IKK activation and NF- kappaB transcriptional activity.
Abstract: The transcription factor NF-kappaB has been the focus of intense investigation for nearly two decades. Over this period, considerable progress has been made in determining the function and regulation of NF-kappaB, although there are nuances in this important signaling pathway that still remain to be understood. The challenge now is to reconcile the regulatory complexity in this pathway with the complexity of responses in which NF-kappaB family members play important roles. In this review, we provide an overview of established NF-kappaB signaling pathways with focus on the current state of research into the mechanisms that regulate IKK activation and NF-kappaB transcriptional activity.

3,829 citations

Journal ArticleDOI
TL;DR: The regulation of ROS levels by NF-κB targets and various ways in which ROS have been proposed to impact NF-σκB signaling pathways are reviewed.
Abstract: NF-κB proteins are a family of transcription factors that are of central importance in inflammation and immunity. NF-κB also plays important roles in other processes, including development, cell growth and survival, and proliferation, and is involved in many pathological conditions. Reactive Oxygen Species (ROS) are created by a variety of cellular processes as part of cellular signaling events. While certain NF-κB-regulated genes play a major role in regulating the amount of ROS in the cell, ROS have various inhibitory or stimulatory roles in NF-κB signaling. Here we review the regulation of ROS levels by NF-κB targets and various ways in which ROS have been proposed to impact NF-κB signaling pathways.

2,219 citations

Journal ArticleDOI
25 May 2000-Nature
TL;DR: The latest developments in the PPAR field are presented, with particular emphasis on the physiological function ofPPARs during various nutritional states, and the possible role of PPARs in several chronic diseases.
Abstract: In developed societies, chronic diseases such as diabetes, obesity, atherosclerosis and cancer are responsible for most deaths These ailments have complex causes involving genetic, environmental and nutritional factors There is evidence that a group of closely related nuclear receptors, called peroxisome proliferator-activated receptors (PPARs), may be involved in these diseases This, together with the fact that PPAR activity can be modulated by drugs such as thiazolidinediones and fibrates, has instigated a huge research effort into PPARs Here we present the latest developments in the PPAR field, with particular emphasis on the physiological function of PPARs during various nutritional states, and the possible role of PPARs in several chronic diseases

1,895 citations

Journal ArticleDOI
TL;DR: Recent advances in the understanding of the diverse biological actions of PPARgamma are reviewed with an eye toward the expanding therapeutic potential of PPargamma agonist drugs.
Abstract: The nuclear receptor PPARgamma is a ligand-activated transcription factor that plays an important role in the control of gene expression linked to a variety of physiological processes. PPARgamma was initially characterized as the master regulator for the development of adipose cells. Ligands for PPARgamma include naturally occurring fatty acids and the thiazolidinedione (TZD) class of antidiabetic drugs. Activation of PPARgamma improves insulin sensitivity in rodents and humans through a combination of metabolic actions, including partitioning of lipid stores and the regulation of metabolic and inflammatory mediators termed adipokines. PPARgamma signaling has also been implicated in the control of cell proliferation, atherosclerosis, macrophage function, and immunity. Here, we review recent advances in our understanding of the diverse biological actions of PPARgamma with an eye toward the expanding therapeutic potential of PPARgamma agonist drugs.

1,798 citations

Related Papers (5)