scispace - formally typeset
Search or ask a question
Proceedings ArticleDOI

Noise-induced contrast enhancement of dark images using non-dynamic stochastic resonance

TL;DR: In this paper, a nonlinear non-dynamic stochastic resonance-based technique has been proposed for enhancement of dark and low contrast images, where a low contrast image is treated as a sub-threshold signal and noise-enhanced signal processing is applied to improve its contrast.
Abstract: In this paper, a nonlinear non-dynamic stochastic resonance-based technique has been proposed for enhancement of dark and low contrast images. A low contrast image is treated as a subthreshold signal and noise-enhanced signal processing is applied to improve its contrast. The proposed technique uniquely utilizes addition of external noise to neutralize the effect of internal noise (due to insufficient illumination) of a low contrast image. Random noise is added repeatedly to an image and is successively hard-thresholded followed by overall averaging. By varying the noise intensities, noise induced resonance is obtained at a particular optimum noise intensity. Performance of the proposed technique has been investigated for four types of noise distributions - gaussian, uniform, poisson and gamma. Quantitative evaluation of their performances have been done in terms of contrast enhancement factor, color enhancement and perceptual quality measure. Comparison with other existing spatial domain techniques shows that the proposed technique gives remarkable enhancement while ascertaining good perceptual quality.
Citations
More filters
Journal ArticleDOI
TL;DR: The proposed DSR-SVD technique is found to give noteworthy better performance in terms of contrast enhancement factor, color enhancement factor and perceptual quality measure.
Abstract: In this paper, a dynamic stochastic resonance (DSR)-based technique in singular value domain for contrast enhancement of dark images has been presented. The internal noise due to the lack of illumination is utilized using a DSR iterative process to obtain enhancement in contrast, colorfulness as well as perceptual quality. DSR is a phenomenon that has been strategically induced and exploited and has been found to give remarkable response when applied on the singular values of a dark low-contrast image. When an image is represented as a summation of image layers comprising of eigen vectors and values, the singular values denote luminance information of each such image layer. By application of DSR on the singular values using the analogy of a bistable double-well potential model, each of the singular values is scaled to produce an image with enhanced contrast as well as visual quality. When compared with performance of some existing spatial domain enhancement techniques, the proposed DSR-SVD technique is found to give noteworthy better performance in terms of contrast enhancement factor, color enhancement factor and perceptual quality measure.

59 citations

01 Jan 2013
TL;DR: This paper focuses on the comparative study of contrast enhancement techniques with special reference to local and global enhancement techniques and proposed solution is identified to apply to this enhancement technique.
Abstract: 2 Abstract: Image enhancement is a processing on an image in order to make it more appropriate for certain applications. It is used to improve the visual effects and the clarity of image or to make the original image more conducive for computer to process. Contrast enhancement changing the pixels intensity of the input image to utilize maximum possible bins. We need to study and review the different image contrast enhancement techniques because contrast losses the brightness in enhancement of image. By considering this fact, the mixture of global and local contrast enhancement techniques may enhance the contrast of image with preserving its brightness. There are many image contrast enhancement techniques such as HE, BBHE, DSIHE, MMBEBHE, RMSHE, MHE. BPDHE, RSWHE, GHE, LHE and LGCS. This paper focuses on the comparative study of contrast enhancement techniques with special reference to local and global enhancement techniques. Also proposed solution is identified to apply to this enhancement technique. This novel method will use in many fields, such as medical image analysis, remote sensing, HDTV, hyper spectral image processing, industrial X-ray image processing, microscopic imaging etc.

47 citations

Proceedings ArticleDOI
08 May 2014
TL;DR: This work proposes a fast algorithm to increase the contrast of an image locally using singular value decomposition (SVD) approach and attempts to define some parameters which can give clues related to the progress of the enhancement process.
Abstract: Image enhancement is a well established field in image processing. The main objective of image enhancement is to increase the perceptual information contained in an image for better representation using some intermediate steps, like, contrast enhancement, debluring, denoising etc. Among them, contrast enhancement is especially important as human eyes are more sensitive to luminance than the chrominance components of an image. Most of the contrast enhancement algorithms proposed till now are global methods. The major drawback of this global approach is that in practical scenarios, the contrast of an image does not deteriorate uniformly and the outputs of the enhancement techniques reach saturation at proper contrast points. That leads to information loss. In fact, to the best of our knowledge, no non-reference perceptual measure of image quality has yet been proposed to measure localized enhancement. We propose a fast algorithm to increase the contrast of an image locally using singular value decomposition (SVD) approach and attempt to define some parameters which can give clues related to the progress of the enhancement process.

21 citations

Proceedings ArticleDOI
16 Dec 2012
TL;DR: The proposed dynamic stochastic resonance (DSR) technique has been proposed for contrast enhancement of dark and low contrast images in discrete wavelet transform (DWT) domain and is found to give noteworthy performance in terms of contrast enhancement, perceptual quality, as well as colorfulness.
Abstract: In this paper, a dynamic stochastic resonance (DSR)-based technique has been proposed for contrast enhancement of dark and low contrast images in discrete wavelet transform (DWT) domain. Traditionally, the performance of a stochastic resonance (SR)-based system is improved by addition of external noise. However, in the proposed DSR-based approach, the internal noise of an image has been utilized for the purpose of contrast enhancement. The degradation due to inadequate illumination is treated as noise, and is used to produce a noise-induced transition of the image from a low-contrast state to a high-contrast state. Stochastic resonance is induced in the approximation and detail coefficients in an iterative fashion, producing an increase in variance and mean of the coefficient distribution. Optimal output response is ensured by selection of optimal of bistable system parameters. An iterative algorithm is followed to achieve target value of performance metrics, such as relative contrast enhancement factor (F), perceptual quality measures (PQM), and color enhancement factor (CEF), at minimum iteration count. When compared with the existing SR-based and non SR-based enhancement techniques in spatial and frequency domains, the proposed technique is found to give noteworthy performance in terms of contrast enhancement, perceptual quality, as well as colorfulness.

20 citations

Journal ArticleDOI
TL;DR: A novel dynamic stochastic resonance (DSR)-based technique for robust extraction of a grayscale logo from a tampered watermarked image and suggests that remarkable improvement of robustness is achieved by using DSR on singular values of DCT.
Abstract: This paper presents a novel dynamic stochastic resonance (DSR)-based technique for robust extraction of a grayscale logo from a tampered watermarked image. The watermark embedding is done on the singular values (SV) of the discrete cosine transform (DCT) coefficients of the cover image. DSR is then strategically applied during the logo extraction process where the SV of DCT coefficients are tuned following a double-well potential model by utilizing the noise introduced during attacks. The resilience of this technique has been tested in the presence of various noises, geometrical distortions, enhancement, compression, filtering and watermarking attacks. The proposed DSR-based technique for logo extraction gives noteworthy robustness without any significant trade-off in perceptual transparency of the watermarked image. A maximization approach has been adopted for the selection of bistable double-well parameters to establish noise-enhanced resonance. When compared with existing watermark extraction techniques based in SVD, DCT, SVD-DCT domains, as well as with their combination with DSR, the results suggest that remarkable improvement of robustness is achieved by using DSR on singular values of DCT.

15 citations

References
More filters
Journal ArticleDOI
TL;DR: In this paper, it was shown that a dynamical system subject to both periodic forcing and random perturbation may show a resonance (peak in the power spectrum) which is absent when either the forcing or the perturbations is absent.
Abstract: It is shown that a dynamical system subject to both periodic forcing and random perturbation may show a resonance (peak in the power spectrum) which is absent when either the forcing or the perturbation is absent.

2,774 citations


"Noise-induced contrast enhancement ..." refers background in this paper

  • ...More technically, SR occurs if the SNR, input/output correlation have a well marked maximum at a certain noise level [13], [15]....

    [...]

  • ...Performance measures such as peak signal-to-noise-ratio (PSNR), mean-squareerror (MSE), structural similarity index measure (SSIM), quality index etc. are not suitable for our purpose as they require distortion-free image or reference image....

    [...]

  • ...For large noise intensities the output is dominated by the noise, also leading to a low SNR....

    [...]

  • ...However, recent studies have convincingly shown that in non-linear systems, noise can induce more ordered regimes, which cause the amplification of weak signals and increase the signal-tonoise ratio (SNR) [12], [13], [14]....

    [...]

  • ...The general behavior of SR mechanism shows that at lower noise intensities the weak signal is unable to cross the threshold, thus giving a very low SNR....

    [...]

Book ChapterDOI

2,671 citations

Book
01 Jan 2008
TL;DR: In this article, a theoretical approach based on linear response theory (LRT) is described, and two new forms of stochastic resonance, predicted on the basis of LRT and subsequently observed in analogue electronic experiments, are described.
Abstract: Stochastic resonance (SR) - a counter-intuitive phenomenon in which the signal due to a weak periodic force in a nonlinear system can be {\it enhanced} by the addition of external noise - is reviewed A theoretical approach based on linear response theory (LRT) is described It is pointed out that, although the LRT theory of SR is by definition restricted to the small signal limit, it possesses substantial advantages in terms of simplicity, generality and predictive power The application of LRT to overdamped motion in a bistable potential, the most commonly studied form of SR, is outlined Two new forms of SR, predicted on the basis of LRT and subsequently observed in analogue electronic experiments, are described

2,403 citations

Journal ArticleDOI
TL;DR: This paper extends a previously designed single-scale center/surround retinex to a multiscale version that achieves simultaneous dynamic range compression/color consistency/lightness rendition and defines a method of color restoration that corrects for this deficiency at the cost of a modest dilution in color consistency.
Abstract: Direct observation and recorded color images of the same scenes are often strikingly different because human visual perception computes the conscious representation with vivid color and detail in shadows, and with resistance to spectral shifts in the scene illuminant. A computation for color images that approaches fidelity to scene observation must combine dynamic range compression, color consistency-a computational analog for human vision color constancy-and color and lightness tonal rendition. In this paper, we extend a previously designed single-scale center/surround retinex to a multiscale version that achieves simultaneous dynamic range compression/color consistency/lightness rendition. This extension fails to produce good color rendition for a class of images that contain violations of the gray-world assumption implicit to the theoretical foundation of the retinex. Therefore, we define a method of color restoration that corrects for this deficiency at the cost of a modest dilution in color consistency. Extensive testing of the multiscale retinex with color restoration on several test scenes and over a hundred images did not reveal any pathological behaviour.

2,395 citations


"Noise-induced contrast enhancement ..." refers methods in this paper

  • ...The performance of the proposed technique (using additive Gaussian noise) is compared with that of contrast limited adaptive histogram equalization (CLAHE) [20], gamma correction (Gamma) [2], single-scale retinex (SSR) [3], multi-scale retinex (MSR) [21] modified high-pass filtering (MHPF) [22] and Auto-contrast control of Adobe Photoshop....

    [...]

Book
11 Sep 1989
TL;DR: This text covers the principles and applications of "multidimensional" and "image" digital signal processing and is suitable for Sr/grad level courses in image processing in EE departments.
Abstract: New to P-H Signal Processing Series (Alan Oppenheim, Series Ed) this text covers the principles and applications of "multidimensional" and "image" digital signal processing. For Sr/grad level courses in image processing in EE departments.

2,022 citations