scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Nomenclature and nosology for neuropathologic subtypes of frontotemporal lobar degeneration: an update

TL;DR: A system of nosology was introduced that grouped the FTLD subtypes into broad categories, based on the molecular defect that is most characteristic, according to current evidence, and provided a concise and consistent terminology that has now been widely adopted in the literature.
Abstract: Nomenclature and nosology for neuropathologic subtypes of frontotemporal lobar degeneration : an update

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: The workgroup sought to ensure that the revised criteria would be flexible enough to be used by both general healthcare providers without access to neuropsychological testing, advanced imaging, and cerebrospinal fluid measures, and specialized investigators involved in research or in clinical trial studies who would have these tools available.
Abstract: The National Institute on Aging and the Alzheimer's Association charged a workgroup with the task of revising the 1984 criteria for Alzheimer's disease (AD) dementia. The workgroup sought to ensure that the revised criteria would be flexible enough to be used by both general healthcare providers without access to neuropsychological testing, advanced imaging, and cerebrospinal fluid measures, and specialized investigators involved in research or in clinical trial studies who would have these tools available. We present criteria for all-cause dementia and for AD dementia. We retained the general framework of probable AD dementia from the 1984 criteria. On the basis of the past 27 years of experience, we made several changes in the clinical criteria for the diagnosis. We also retained the term possible AD dementia, but redefined it in a manner more focused than before. Biomarker evidence was also integrated into the diagnostic formulations for probable and possible AD dementia for use in research settings. The core clinical criteria for AD dementia will continue to be the cornerstone of the diagnosis in clinical practice, but biomarker evidence is expected to enhance the pathophysiological specificity of the diagnosis of AD dementia. Much work lies ahead for validating the biomarker diagnosis of AD dementia.

13,710 citations

Journal ArticleDOI
01 Sep 2011-Brain
TL;DR: The revised criteria for behavioural variant frontotemporal dementia improve diagnostic accuracy compared with previously established criteria in a sample with known frontotmporal lobar degeneration and reflect the optimized diagnostic features, less restrictive exclusion features and a flexible structure that accommodates different initial clinical presentations.
Abstract: Based on the recent literature and collective experience, an international consortium developed revised guidelines for the diagnosis of behavioural variant frontotemporal dementia. The validation process retrospectively reviewed clinical records and compared the sensitivity of proposed and earlier criteria in a multi-site sample of patients with pathologically verified frontotemporal lobar degeneration. According to the revised criteria, 'possible' behavioural variant frontotemporal dementia requires three of six clinically discriminating features (disinhibition, apathy/inertia, loss of sympathy/empathy, perseverative/compulsive behaviours, hyperorality and dysexecutive neuropsychological profile). 'Probable' behavioural variant frontotemporal dementia adds functional disability and characteristic neuroimaging, while behavioural variant frontotemporal dementia 'with definite frontotemporal lobar degeneration' requires histopathological confirmation or a pathogenic mutation. Sixteen brain banks contributed cases meeting histopathological criteria for frontotemporal lobar degeneration and a clinical diagnosis of behavioural variant frontotemporal dementia, Alzheimer's disease, dementia with Lewy bodies or vascular dementia at presentation. Cases with predominant primary progressive aphasia or extra-pyramidal syndromes were excluded. In these autopsy-confirmed cases, an experienced neurologist or psychiatrist ascertained clinical features necessary for making a diagnosis according to previous and proposed criteria at presentation. Of 137 cases where features were available for both proposed and previously established criteria, 118 (86%) met 'possible' criteria, and 104 (76%) met criteria for 'probable' behavioural variant frontotemporal dementia. In contrast, 72 cases (53%) met previously established criteria for the syndrome (P < 0.001 for comparison with 'possible' and 'probable' criteria). Patients who failed to meet revised criteria were significantly older and most had atypical presentations with marked memory impairment. In conclusion, the revised criteria for behavioural variant frontotemporal dementia improve diagnostic accuracy compared with previously established criteria in a sample with known frontotemporal lobar degeneration. Greater sensitivity of the proposed criteria may reflect the optimized diagnostic features, less restrictive exclusion features and a flexible structure that accommodates different initial clinical presentations. Future studies will be needed to establish the reliability and specificity of these revised diagnostic guidelines.

3,706 citations


Cites background or methods from "Nomenclature and nosology for neuro..."

  • ...The classification was modified from existing FTLD criteria (Mackenzie et al., 2009, 2010) to accommodate cases with incomplete immunohistochemistry....

    [...]

  • ...These changes result from frontotemporal lobar degeneration (FTLD) associated with a range of heterogeneous pathologies (Mackenzie et al., 2009, 2010)....

    [...]

  • ...Sites were asked to select cases who met modified Mackenzie criteria for FTLD (Mackenzie et al., 2009, 2010) (Table 1), and were clinically diagnosed with bvFTD, Alzheimer’s disease, vascular dementia, dementia with Lewy bodies or other neurological or psychiatric conditions at presentation....

    [...]

Journal ArticleDOI
TL;DR: The new guidelines recognize the pre‐clinical stage of AD, enhance the assessment of AD to include amyloid accumulation as well as neurofibrillary change and neuritic plaques, and establish protocols for the neuropathologic assessment of Lewy body disease, vascular brain injury, hippocampal sclerosis, and TDP‐43 inclusions.
Abstract: A consensus panel from the United States and Europe was convened recently to update and revise the 1997 consensus guidelines for the neuropathologic evaluation of Alzheimer's disease (AD) and other diseases of brain that are common in the elderly. The new guidelines recognize the pre-clinical stage of AD, enhance the assessment of AD to include amyloid accumulation as well as neurofibrillary change and neuritic plaques, establish protocols for the neuropathologic assessment of Lewy body disease, vascular brain injury, hippocampal sclerosis, and TDP-43 inclusions, and recommend standard approaches for the workup of cases and their clinico-pathologic correlation.

2,240 citations


Cites background from "Nomenclature and nosology for neuro..."

  • ...For some tauopathies, such as tangle-predominant senile dementia (TPSD), chronic traumatic encephalopathy (CTE), or diffuse neurofibrillary tangles with calcification (DNTC), the distribution and density of tangles and the paucity of neocortical plaques must be carefully documented, since TPSD, CTE, and DNTC tangles, like AD-type NFTs, also contain both 3R and 4R tau [73–78]....

    [...]

  • ...For FTLD-TDP (for “TDP-43”) and FTLD-FUS (for “fused in sarcoma”), immunohistochemistry for ubiquitin, alpha-internexin, TDP-43, and FUS can be of assistance [73–75]....

    [...]

  • ..., Western blot) remains a research adjunct to neuropathologic diagnosis [73–75]....

    [...]

Journal ArticleDOI
TL;DR: A practical guide for the implementation of recently revised National Institute on Aging–Alzheimer's Association guidelines for the neuropathologic assessment of Alzheimer’s disease is presented.
Abstract: We present a practical guide for the implementation of recently revised National Institute on Aging–Alzheimer’s Association guidelines for the neuropathologic assessment of Alzheimer’s disease (AD). Major revisions from previous consensus criteria are: (1) recognition that AD neuropathologic changes may occur in the apparent absence of cognitive impairment, (2) an “ABC” score for AD neuropathologic change that incorporates histopathologic assessments of amyloid β deposits (A), staging of neurofibrillary tangles (B), and scoring of neuritic plaques (C), and (3) more detailed approaches for assessing commonly co-morbid conditions such as Lewy body disease, vascular brain injury, hippocampal sclerosis, and TAR DNA binding protein (TDP)-43 immunoreactive inclusions. Recommendations also are made for the minimum sampling of brain, preferred staining methods with acceptable alternatives, reporting of results, and clinico-pathologic correlations.

1,965 citations

Journal ArticleDOI
01 Jan 2013-Brain
TL;DR: The frequent association of chronic traumatic encephalopathy with other neurodegenerative disorders suggests that repetitive brain trauma and hyperphosphorylated tau protein deposition promote the accumulation of other abnormally aggregated proteins including TAR DNA-binding protein 43, amyloid beta protein and alpha-synuclein.
Abstract: Chronic traumatic encephalopathy is a progressive tauopathy that occurs as a consequence of repetitive mild traumatic brain injury. We analysed post-mortem brains obtained from a cohort of 85 subjects with histories of repetitive mild traumatic brain injury and found evidence of chronic traumatic encephalopathy in 68 subjects: all males, ranging in age from 17 to 98 years (mean 59.5 years), including 64 athletes, 21 military veterans (86% of whom were also athletes) and one individual who engaged in self-injurious head banging behaviour. Eighteen age- and gender-matched individuals without a history of repetitive mild traumatic brain injury served as control subjects. In chronic traumatic encephalopathy, the spectrum of hyperphosphorylated tau pathology ranged in severity from focal perivascular epicentres of neurofibrillary tangles in the frontal neocortex to severe tauopathy affecting widespread brain regions, including the medial temporal lobe, thereby allowing a progressive staging of pathology from stages I-IV. Multifocal axonal varicosities and axonal loss were found in deep cortex and subcortical white matter at all stages of chronic traumatic encephalopathy. TAR DNA-binding protein 43 immunoreactive inclusions and neurites were also found in 85% of cases, ranging from focal pathology in stages I-III to widespread inclusions and neurites in stage IV. Symptoms in stage I chronic traumatic encephalopathy included headache and loss of attention and concentration. Additional symptoms in stage II included depression, explosivity and short-term memory loss. In stage III, executive dysfunction and cognitive impairment were found, and in stage IV, dementia, word-finding difficulty and aggression were characteristic. Data on athletic exposure were available for 34 American football players; the stage of chronic traumatic encephalopathy correlated with increased duration of football play, survival after football and age at death. Chronic traumatic encephalopathy was the sole diagnosis in 43 cases (63%); eight were also diagnosed with motor neuron disease (12%), seven with Alzheimer's disease (11%), 11 with Lewy body disease (16%) and four with frontotemporal lobar degeneration (6%). There is an ordered and predictable progression of hyperphosphorylated tau abnormalities through the nervous system in chronic traumatic encephalopathy that occurs in conjunction with widespread axonal disruption and loss. The frequent association of chronic traumatic encephalopathy with other neurodegenerative disorders suggests that repetitive brain trauma and hyperphosphorylated tau protein deposition promote the accumulation of other abnormally aggregated proteins including TAR DNA-binding protein 43, amyloid beta protein and alpha-synuclein.

1,699 citations


Cites methods from "Nomenclature and nosology for neuro..."

  • ...…lobar degeneration Neuropathological diagnosis of FTLD was based on predominant involvement of the frontal and temporal lobes and characteristic immunohistochemistry for p-tau, TDP-43 and p-TDP-43 using established criteria for FTLD (Cairns et al., 2007; Bigio, 2008; Mackenzie et al., 2010)....

    [...]

References
More filters
Journal ArticleDOI
27 Feb 2009-Science
TL;DR: Neuronal cytoplasmic protein aggregation and defective RNA metabolism thus appear to be common pathogenic mechanisms involved in ALS and possibly in other neurodegenerative disorders.
Abstract: Amyotrophic lateral sclerosis (ALS) is a fatal degenerative motor neuron disorder Ten percent of cases are inherited; most involve unidentified genes We report here 13 mutations in the fused in sarcoma/translated in liposarcoma (FUS/TLS) gene on chromosome 16 that were specific for familial ALS The FUS/TLS protein binds to RNA, functions in diverse processes, and is normally located predominantly in the nucleus In contrast, the mutant forms of FUS/TLS accumulated in the cytoplasm of neurons, a pathology that is similar to that of the gene TAR DNA-binding protein 43 (TDP43), whose mutations also cause ALS Neuronal cytoplasmic protein aggregation and defective RNA metabolism thus appear to be common pathogenic mechanisms involved in ALS and possibly in other neurodegenerative disorders

2,387 citations


"Nomenclature and nosology for neuro..." refers background in this paper

  • ...Recently, two studies identified mutations in the gene encoding the fused in sarcoma (FUS) protein (also known as translocated in liposarcoma, TLS), as the cause of familial amyotrophic lateral sclerosis (ALS) type 6 [5, 14]....

    [...]

Journal ArticleDOI
27 Feb 2009-Science
TL;DR: A missense mutation in the gene encoding fused in sarcoma (FUS) in a British kindred, linked to ALS6, is identified, which suggests that a common mechanism may underlie motor neuron degeneration.
Abstract: Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease that is familial in 10% of cases. We have identified a missense mutation in the gene encoding fused in sarcoma (FUS) in a British kindred, linked to ALS6. In a survey of 197 familial ALS index cases, we identified two further missense mutations in eight families. Postmortem analysis of three cases with FUS mutations showed FUS-immunoreactive cytoplasmic inclusions and predominantly lower motor neuron degeneration. Cellular expression studies revealed aberrant localization of mutant FUS protein. FUS is involved in the regulation of transcription and RNA splicing and transport, and it has functional homology to another ALS gene, TARDBP, which suggests that a common mechanism may underlie motor neuron degeneration.

2,373 citations


"Nomenclature and nosology for neuro..." refers background in this paper

  • ...Recently, two studies identified mutations in the gene encoding the fused in sarcoma (FUS) protein (also known as translocated in liposarcoma, TLS), as the cause of familial amyotrophic lateral sclerosis (ALS) type 6 [5, 14]....

    [...]

Journal ArticleDOI
01 Nov 2009-Brain
TL;DR: Findings suggest that FUS is the pathological protein in a significant subgroup of sporadic FTD and reinforce the concept that FTd and amyotrophic lateral sclerosis are closely related conditions.
Abstract: Frontotemporal dementia (FTD) is a clinical syndrome with a heterogeneous molecular basis. The neuropathology associated with most FTD is characterized by abnormal cellular aggregates of either transactive response DNA-binding protein with Mr 43 kDa (TDP-43) or tau protein. However, we recently described a subgroup of FTD patients, representing around 10%, with an unusual clinical phenotype and pathology characterized by frontotemporal lobar degeneration with neuronal inclusions composed of an unidentified ubiquitinated protein (atypical FTLD-U; aFTLD-U). All cases were sporadic and had early-onset FTD with severe progressive behavioural and personality changes in the absence of aphasia or significant motor features. Mutations in the fused in sarcoma (FUS) gene have recently been identified as a cause of familial amyotrophic lateral sclerosis, with these cases reported to have abnormal cellular accumulations of FUS protein. Because of the recognized clinical, genetic and pathological overlap between FTD and amyotrophic lateral sclerosis, we investigated whether FUS might also be the pathological protein in aFTLD-U. In all our aFTLD-U cases (n = 15), FUS immunohistochemistry labelled all the neuronal inclusions and also demonstrated previously unrecognized glial pathology. Immunoblot analysis of protein extracted from post-mortem aFTLD-U brain tissue demonstrated increased levels of insoluble FUS. No mutations in the FUS gene were identified in any of our patients. These findings suggest that FUS is the pathological protein in a significant subgroup of sporadic FTD and reinforce the concept that FTD and amyotrophic lateral sclerosis are closely related conditions.

642 citations

Journal ArticleDOI
TL;DR: Findings suggest that FUS may play an important role in the pathogenesis of NIFID, and double-label immunofluorescence confirmed that many cells had only FUS- positive inclusions and that all cells with IF-positive inclusions also contained pathological FUS.
Abstract: Neuronal intermediate filament inclusion disease (NIFID) is an uncommon neurodegenerative condition that typically presents as early-onset, sporadic frontotemporal dementia (FTD), associated with a pyramidal and/or extrapyramidal movement disorder. The neuropathology is characterized by frontotemporal lobar degeneration with neuronal inclusions that are immunoreactive for all class IV intermediate filaments (IF), light, medium and heavy neurofilament subunits and α-internexin. However, not all the inclusions in NIFID are IF-positive and the primary molecular defect remains uncertain. Mutations in the gene encoding the fused in sarcoma (FUS) protein have recently been identified as a cause of familial amyotrophic lateral sclerosis (ALS). Because of the recognized clinical, genetic and pathological overlap between FTD and ALS, we investigated the possible role of FUS in NIFID. We found abnormal intracellular accumulation of FUS to be a consistent feature of our NIFID cases (n = 5). More neuronal inclusions were labeled using FUS immunohistochemistry than for IF. Several types of inclusions were consistently FUS-positive but IF-negative, including neuronal intranuclear inclusions and glial cytoplasmic inclusions. Double-label immunofluorescence confirmed that many cells had only FUS-positive inclusions and that all cells with IF-positive inclusions also contained pathological FUS. No mutation in the FUS gene was identified in a single case with DNA available. These findings suggest that FUS may play an important role in the pathogenesis of NIFID.

243 citations

Related Papers (5)