scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Non-Abelian Anyons and Topological Quantum Computation

TL;DR: In this article, the authors describe the mathematical underpinnings of topological quantum computation and the physics of the subject are addressed, using the ''ensuremath{ u}=5∕2$ fractional quantum Hall state as the archetype of a non-Abelian topological state enabling fault-tolerant quantum computation.
Abstract: Topological quantum computation has emerged as one of the most exciting approaches to constructing a fault-tolerant quantum computer. The proposal relies on the existence of topological states of matter whose quasiparticle excitations are neither bosons nor fermions, but are particles known as non-Abelian anyons, meaning that they obey non-Abelian braiding statistics. Quantum information is stored in states with multiple quasiparticles, which have a topological degeneracy. The unitary gate operations that are necessary for quantum computation are carried out by braiding quasiparticles and then measuring the multiquasiparticle states. The fault tolerance of a topological quantum computer arises from the nonlocal encoding of the quasiparticle states, which makes them immune to errors caused by local perturbations. To date, the only such topological states thought to have been found in nature are fractional quantum Hall states, most prominently the $\ensuremath{ u}=5∕2$ state, although several other prospective candidates have been proposed in systems as disparate as ultracold atoms in optical lattices and thin-film superconductors. In this review article, current research in this field is described, focusing on the general theoretical concepts of non-Abelian statistics as it relates to topological quantum computation, on understanding non-Abelian quantum Hall states, on proposed experiments to detect non-Abelian anyons, and on proposed architectures for a topological quantum computer. Both the mathematical underpinnings of topological quantum computation and the physics of the subject are addressed, using the $\ensuremath{ u}=5∕2$ fractional quantum Hall state as the archetype of a non-Abelian topological state enabling fault-tolerant quantum computation.
Citations
More filters
Journal ArticleDOI
TL;DR: Topological superconductors are new states of quantum matter which cannot be adiabatically connected to conventional insulators and semiconductors and are characterized by a full insulating gap in the bulk and gapless edge or surface states which are protected by time reversal symmetry.
Abstract: Topological insulators are new states of quantum matter which cannot be adiabatically connected to conventional insulators and semiconductors. They are characterized by a full insulating gap in the bulk and gapless edge or surface states which are protected by time-reversal symmetry. These topological materials have been theoretically predicted and experimentally observed in a variety of systems, including HgTe quantum wells, BiSb alloys, and Bi2Te3 and Bi2Se3 crystals. Theoretical models, materials properties, and experimental results on two-dimensional and three-dimensional topological insulators are reviewed, and both the topological band theory and the topological field theory are discussed. Topological superconductors have a full pairing gap in the bulk and gapless surface states consisting of Majorana fermions. The theory of topological superconductors is reviewed, in close analogy to the theory of topological insulators.

11,092 citations

Journal ArticleDOI
TL;DR: In this paper, a detailed review of the role of the Berry phase effect in various solid state applications is presented. And a requantization method that converts a semiclassical theory to an effective quantum theory is demonstrated.
Abstract: Ever since its discovery, the Berry phase has permeated through all branches of physics. Over the last three decades, it was gradually realized that the Berry phase of the electronic wave function can have a profound effect on material properties and is responsible for a spectrum of phenomena, such as ferroelectricity, orbital magnetism, various (quantum/anomalous/spin) Hall effects, and quantum charge pumping. This progress is summarized in a pedagogical manner in this review. We start with a brief summary of necessary background, followed by a detailed discussion of the Berry phase effect in a variety of solid state applications. A common thread of the review is the semiclassical formulation of electron dynamics, which is a versatile tool in the study of electron dynamics in the presence of electromagnetic fields and more general perturbations. Finally, we demonstrate a re-quantization method that converts a semiclassical theory to an effective quantum theory. It is clear that the Berry phase should be added as a basic ingredient to our understanding of basic material properties.

3,344 citations

Journal ArticleDOI
25 May 2012-Science
TL;DR: Electrical measurements on indium antimonide nanowires contacted with one normal (gold) and one superconducting (niobium titanium nitride) electrode support the hypothesis of Majorana fermions in Nanowires coupled to superconductors.
Abstract: Majorana fermions are particles identical to their own antiparticles. They have been theoretically predicted to exist in topological superconductors. Here, we report electrical measurements on indium antimonide nanowires contacted with one normal (gold) and one superconducting (niobium titanium nitride) electrode. Gate voltages vary electron density and define a tunnel barrier between normal and superconducting contacts. In the presence of magnetic fields on the order of 100 millitesla, we observe bound, midgap states at zero bias voltage. These bound states remain fixed to zero bias, even when magnetic fields and gate voltages are changed over considerable ranges. Our observations support the hypothesis of Majorana fermions in nanowires coupled to superconductors.

3,273 citations

Journal ArticleDOI
TL;DR: Topological photonics is a rapidly emerging field of research in which geometrical and topological ideas are exploited to design and control the behavior of light as mentioned in this paper, which holds great promise for applications.
Abstract: Topological photonics is a rapidly emerging field of research in which geometrical and topological ideas are exploited to design and control the behavior of light. Drawing inspiration from the discovery of the quantum Hall effects and topological insulators in condensed matter, recent advances have shown how to engineer analogous effects also for photons, leading to remarkable phenomena such as the robust unidirectional propagation of light, which hold great promise for applications. Thanks to the flexibility and diversity of photonics systems, this field is also opening up new opportunities to realize exotic topological models and to probe and exploit topological effects in new ways. This article reviews experimental and theoretical developments in topological photonics across a wide range of experimental platforms, including photonic crystals, waveguides, metamaterials, cavities, optomechanics, silicon photonics, and circuit QED. A discussion of how changing the dimensionality and symmetries of photonics systems has allowed for the realization of different topological phases is offered, and progress in understanding the interplay of topology with non-Hermitian effects, such as dissipation, is reviewed. As an exciting perspective, topological photonics can be combined with optical nonlinearities, leading toward new collective phenomena and novel strongly correlated states of light, such as an analog of the fractional quantum Hall effect.

3,052 citations

Journal ArticleDOI
12 Sep 2010-Nature
TL;DR: A number of physical systems, spanning much of modern physics, are being developed for this task, ranging from single particles of light to superconducting circuits, and it is not yet clear which, if any, will ultimately prove successful as discussed by the authors.
Abstract: Quantum mechanics---the theory describing the fundamental workings of nature---is famously counterintuitive: it predicts that a particle can be in two places at the same time, and that two remote particles can be inextricably and instantaneously linked These predictions have been the topic of intense metaphysical debate ever since the theory's inception early last century However, supreme predictive power combined with direct experimental observation of some of these unusual phenomena leave little doubt as to its fundamental correctness In fact, without quantum mechanics we could not explain the workings of a laser, nor indeed how a fridge magnet operates Over the last several decades quantum information science has emerged to seek answers to the question: can we gain some advantage by storing, transmitting and processing information encoded in systems that exhibit these unique quantum properties? Today it is understood that the answer is yes Many research groups around the world are working towards one of the most ambitious goals humankind has ever embarked upon: a quantum computer that promises to exponentially improve computational power for particular tasks A number of physical systems, spanning much of modern physics, are being developed for this task---ranging from single particles of light to superconducting circuits---and it is not yet clear which, if any, will ultimately prove successful Here we describe the latest developments for each of the leading approaches and explain what the major challenges are for the future

2,301 citations

References
More filters
Book
01 Jan 2000
TL;DR: In this article, the quantum Fourier transform and its application in quantum information theory is discussed, and distance measures for quantum information are defined. And quantum error-correction and entropy and information are discussed.
Abstract: Part I Fundamental Concepts: 1 Introduction and overview 2 Introduction to quantum mechanics 3 Introduction to computer science Part II Quantum Computation: 4 Quantum circuits 5 The quantum Fourier transform and its application 6 Quantum search algorithms 7 Quantum computers: physical realization Part III Quantum Information: 8 Quantum noise and quantum operations 9 Distance measures for quantum information 10 Quantum error-correction 11 Entropy and information 12 Quantum information theory Appendices References Index

25,929 citations

Journal ArticleDOI
TL;DR: In this article, it was shown that the Aharonov-Bohm effect can be interpreted as a geometrical phase factor and a general formula for γ(C) was derived in terms of the spectrum and eigen states of the Hamiltonian over a surface spanning C.
Abstract: A quantal system in an eigenstate, slowly transported round a circuit C by varying parameters R in its Hamiltonian Ĥ(R), will acquire a geometrical phase factor exp{iγ(C)} in addition to the familiar dynamical phase factor. An explicit general formula for γ(C) is derived in terms of the spectrum and eigenstates of Ĥ(R) over a surface spanning C. If C lies near a degeneracy of Ĥ, γ(C) takes a simple form which includes as a special case the sign change of eigenfunctions of real symmetric matrices round a degeneracy. As an illustration γ(C) is calculated for spinning particles in slowly-changing magnetic fields; although the sign reversal of spinors on rotation is a special case, the effect is predicted to occur for bosons as well as fermions, and a method for observing it is proposed. It is shown that the Aharonov-Bohm effect can be interpreted as a geometrical phase factor.

7,425 citations

Journal ArticleDOI
TL;DR: In this paper, the authors describe the possibility of simulating physics in the classical approximation, a thing which is usually described by local differential equations, and the possibility that there is to be an exact simulation, that the computer will do exactly the same as nature.
Abstract: This chapter describes the possibility of simulating physics in the classical approximation, a thing which is usually described by local differential equations. But the physical world is quantum mechanical, and therefore the proper problem is the simulation of quantum physics. A computer which will give the same probabilities as the quantum system does. The present theory of physics allows space to go down into infinitesimal distances, wavelengths to get infinitely great, terms to be summed in infinite order, and so forth; and therefore, if this proposition is right, physical law is wrong. Quantum theory and quantizing is a very specific type of theory. The chapter talks about the possibility that there is to be an exact simulation, that the computer will do exactly the same as nature. There are interesting philosophical questions about reasoning, and relationship, observation, and measurement and so on, which computers have stimulated people to think about anew, with new types of thinking.

7,202 citations

Book
04 Nov 1994
TL;DR: In this paper, the authors introduce the theory of quantum groups with emphasis on the spectacular connections with knot theory and Drinfeld's recent fundamental contributions and present the quantum groups attached to SL2 as well as the basic concepts of the Hopf algebras.
Abstract: Here is an introduction to the theory of quantum groups with emphasis on the spectacular connections with knot theory and Drinfeld's recent fundamental contributions. It presents the quantum groups attached to SL2 as well as the basic concepts of the theory of Hopf algebras. Coverage also focuses on Hopf algebras that produce solutions of the Yang-Baxter equation and provides an account of Drinfeld's elegant treatment of the monodromy of the Knizhnik-Zamolodchikov equations.

5,966 citations

Journal ArticleDOI
06 Mar 1987-Science
TL;DR: The oxide superconductors, particularly those recently discovered that are based on La2CuO4, have a set of peculiarities that suggest a common, unique mechanism: they tend in every case to occur near a metal-insulator transition into an odd-electron insulator with peculiar magnetic properties.
Abstract: The oxide superconductors, particularly those recently discovered that are based on La2CuO4have a set of peculiarities that suggest a common, unique mechanism: they tend in every case to occur near a metal-insulator transition into an odd-electron insulator with peculiar magnetic properties. This insulating phase is proposed to be the long-sought “resonating-valence-bond” state or “quantum spin liquid” hypothesized in 1973. This insulating magnetic phase is favored by low spin, low dimensionality, and magnetic frustration. The preexisting magnetic singlet pairs of the insulating state become charged superconducting pairs when the insulator is doped sufficiently strongly. The mechanism for superconductivity is hence predominantly electronic and magnetic, although weak phonon interactions may favor the state. Many unusual properties are predicted, especially of the insulating state.

5,409 citations