scispace - formally typeset
Journal ArticleDOI

Non-existence of $$*$$ ∗ -Ricci solitons on $$(\kappa ,\mu )$$ ( κ , μ ) -almost cosymplectic manifolds

01 Aug 2019-Journal of Geometry (Springer International Publishing)-Vol. 110, Iss: 2, pp 1-7

...read more


Citations
More filters
Book

[...]

01 Jan 1970

294 citations

Journal ArticleDOI

[...]

15 Apr 2021
TL;DR: In this article, it was shown that Bach flat almost coKahler manifold admits Ricci solitons, satisfying the critical point equation (CPE) or Bach flat.
Abstract: In this paper, we study an almost coKahler manifold admitting certain metrics such as $$*$$ -Ricci solitons, satisfying the critical point equation (CPE) or Bach flat. First, we consider a coKahler 3-manifold (M, g) admitting a $$*$$ -Ricci soliton (g, X) and we show in this case that either M is locally flat or X is an infinitesimal contact transformation. Next, we study non-coKahler $$(\kappa ,\mu )$$ -almost coKahler metrics as CPE metrics and prove that such a g cannot be a solution of CPE with non-trivial function f. Finally, we prove that a $$(\kappa , \mu )$$ -almost coKahler manifold (M, g) is coKahler if either M admits a divergence free Cotton tensor or the metric g is Bach flat. In contrast to this, we show by a suitable example that there are Bach flat almost coKahler manifolds which are non-coKahler.

3 citations

Journal ArticleDOI

[...]

TL;DR: In this article, the Ricci soliton is shown to be Ricci flat and locally isometric with respect to the Euclidean distance of the potential vector field when the manifold satisfies gradient almost.
Abstract: In the present paper, we initiate the study of $$*$$ - $$\eta $$ -Ricci soliton within the framework of Kenmotsu manifolds as a characterization of Einstein metrics. Here we display that a Kenmotsu metric as a $$*$$ - $$\eta $$ -Ricci soliton is Einstein metric if the soliton vector field is contact. Further, we have developed the characterization of the Kenmotsu manifold or the nature of the potential vector field when the manifold satisfies gradient almost $$*$$ - $$\eta $$ -Ricci soliton. Next, we deliberate $$*$$ - $$\eta $$ -Ricci soliton admitting $$(\kappa ,\mu )^\prime $$ -almost Kenmotsu manifold and proved that the manifold is Ricci flat and is locally isometric to $${\mathbb {H}}^{n+1}(-4)\times {\mathbb {R}}^n$$ . Finally we present some examples to decorate the existence of $$*$$ - $$\eta $$ -Ricci soliton, gradient almost $$*$$ - $$\eta $$ -Ricci soliton on Kenmotsu manifold.

References
More filters
Journal ArticleDOI

[...]

2,749 citations

Book

[...]

08 Jan 2002
TL;DR: In this article, the authors describe a complex geometry model of Symplectic Manifolds with principal S1-bundles and Tangent Sphere Bundles, as well as a negative Xi-sectional Curvature.
Abstract: Preface * 1. Symplectic Manifolds * 2. Principal S1-bundles * 3. Contact Manifolds * 4. Associated Metrics * 5. Integral Submanifolds and Contact Transformations * 6. Sasakian and Cosymplectic Manifolds * 7. Curvature of Contact Metric Manifolds * 8. Submanifolds of Kahler and Sasakian Manifolds * 9. Tangent Bundles and Tangent Sphere Bundles * 10. Curvature Functionals and Spaces of Associated Metrics * 11. Negative Xi-sectional Curvature * 12. Complex Contact Manifolds * 13. Additional Topics in Complex Geometry * 14. 3-Sasakian Manifolds * Bibliography * Subject Index * Author Index

1,643 citations

[...]

01 Jan 1988

562 citations

Book ChapterDOI

[...]

25 May 2004

392 citations

Journal ArticleDOI

[...]

331 citations