scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Non-spherical core collapse supernovae. I. Neutrino-driven convection, Rayleigh-Taylor instabilities, and the formation and propagation of metal clumps

01 Sep 2003-Astronomy and Astrophysics (EDP Sciences)-Vol. 408, Iss: 2, pp 621-649
TL;DR: In this article, a simulation of a type II explosion in a 15 M blue supergiant progenitor is presented, that confirms our earlier type II models and extends their validity to times as late as 5.5 hours after core bounce.
Abstract: We have performed two-dimensional simulations of core collapse supernovae that encompass shock revival by neutrino heating, neutrino-driven convection, explosive nucleosynthesis, the growth of Rayleigh-Taylor instabilities, and the propagation of newly formed metal clumps through the exploding star. A simulation of a type II explosion in a 15 M blue supergiant progenitor is presented, that confirms our earlier type II models and extends their validity to times as late as 5.5 hours after core bounce. We also study a type Ib-like explosion, by simply removing the hydrogen envelope of the progenitor model. This allows for a first comparison of type II and type Ib evolution. We present evidence that the hydrodynamics of core collapse supernovae beyond shock revival diers markedly from the results of simulations that have followed the Rayleigh-Taylor mixing starting from ad hoc energy deposition schemes to initiate the explosion. We find iron group elements to be synthesized in an anisotropic, dense, low-entropy shell that expands with velocities of17 000 km s 1 shortly after shock revival. The growth of Rayleigh-Taylor instabilities at the Si/ Oa nd (C+O)/He composition interfaces of the progenitor, seeded by the flow-structures resulting from neutrino-driven convection, leads to a fragmentation of this shell into metal-rich "clumps". This fragmentation starts already 20 s after core bounce and is complete within the first few minutes of the explosion. During this time the clumps are slowed down by drag, and by the positive pressure gradient in the unstable layers. However, at t 300 s they decouple from the flow and start to propagate ballistically and subsonically through the He core, with the maximum velocities of metals remaining constant at3500 5500 km s 1 . This early "clump decoupling" leads to significantly higher 56 Ni velocities at t= 300 s than in one-dimensional models of the explosion, demonstrating that multi-dimensional eects which are at work within the first minutes, and which have been neglected in previous studies (especially in those which dealt with the mixing in type II supernovae), are crucial. Despite comparably high initial maximum nickel velocities in both our type II and our type Ib-like model, we find that there are large dierences in the final maximum nickel velocities between both cases. In the "type Ib" model the maximum velocities of metals remain frozen in at3500 5500 km s 1 for t 300 s, while in the type II model they drop significantly for t > 1500 s. In the latter case, the massive hydrogen envelope of the progenitor forces the supernova shock to slow down strongly, leaving behind a reverse shock and a dense helium shell (or "wall") below the He/H interface. After penetrating into this dense material the metal-rich clumps possess supersonic speeds, before they are slowed down by drag forces to1200 km s 1 at a time of 20 000 s post-bounce. While, due to this deceleration, the maximum velocities of iron-group elements in SN 1987 A cannot be reproduced in case of the considered 15 M progenitor, the "type Ib" model is in fairly good agreement with observed clump velocities and the amount of mixing inferred for type Ib supernovae. Thus it appears promising for calculations of synthetic spectra and light curves. Furthermore, our simulations indicate that for type Ib explosions the pattern of clump formation in the ejecta is correlated with the structure of the convective pattern prevailing during the shock-revival phase. This might be used to deduce observational constraints for the dynamics during this early phase of the evolution, and the role of neutrino heating in initiating the explosion.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: The neutrino-heating mechanism, aided by nonradial flows, drives explosions, albeit low-energy ones, of O-Ne-Mg-core and some Fe-core progenitors as mentioned in this paper.
Abstract: Supernova theory, numerical and analytic, has made remarkable progress in the past decade. This progress was made possible by more sophisticated simulation tools, especially for neutrino transport, improved microphysics, and deeper insights into the role of hydrodynamic instabilities. Violent, large-scale nonradial mass motions are generic in supernova cores. The neutrino-heating mechanism, aided by nonradial flows, drives explosions, albeit low-energy ones, of O-Ne-Mg-core and some Fe-core progenitors. The characteristics of the neutrino emission from newborn neutron stars were revised, new features of the gravitational-wave signals were discovered, our notion of supernova nucleosynthesis was shattered, and our understanding of pulsar kicks and explosion asymmetries was significantly improved. But simulations also suggest that neutrino-powered explosions might not explain the most energetic supernovae and hypernovae, which seem to demand magnetorotational driving. Now that modeling is being advanced from...

971 citations

Journal ArticleDOI
TL;DR: In this paper, a grid of supernovae resulting from massive stars with solar metallicity and masses from 9.0 to 120 solar masses are calculated for nucleosynthesis, light curves, explosion energies, and remnant masses.
Abstract: Nucleosynthesis, light curves, explosion energies, and remnant masses are calculated for a grid of supernovae resulting from massive stars with solar metallicity and masses from 9.0 to 120 solar masses. The full evolution is followed using an adaptive reaction network of up to 2000 nuclei. A novel aspect of the survey is the use of a one-dimensional neutrino transport model for the explosion. This explosion model has been calibrated to give the observed energy for SN 1987A, using several standard progenitors, and for the Crab supernova using a 9.6 solar mass progenitor. As a result of using a calibrated central engine, the final kinetic energy of the supernova is variable and sensitive to the structure of the presupernova star. Many progenitors with extended core structures do not explode, but become black holes, and the masses of exploding stars do not form a simply connected set. The resulting nucleosynthesis agrees reasonably well with the sun provided that a reasonable contribution from Type Ia supernovae is also allowed, but with a deficiency of light s-process isotopes. The resulting neutron star IMF has a mean gravitational mass near 1.4 solar masses. The average black hole mass is about 9 solar masses if only the helium core implodes, and 14 solar masses if the entire presupernova star collapses. Only ~10% of supernovae come from stars over 20 solar masses and some of these are Type Ib or Ic. Some useful systematics of Type IIp light curves are explored.

892 citations

Book
19 Dec 2003
TL;DR: In this article, the Equations of Gas Dynamics and Magnetoplasmas Dynamics were studied, as well as Magnetoplasma Stability and Transport in Magnetplasmas and Magnetic Stability.
Abstract: 1 The Equations of Gas Dynamics 2 Magnetoplasma Dynamics 3 Waves in Magnetoplasmas 4 Magnetoplasma Stability 5 Transport in Magnetoplasmas 6 Extensions of Theory Bibliography Index

748 citations

Journal ArticleDOI
TL;DR: In this article, the authors present new nucleosynthesis yields as functions of the stellar mass, metallicity, and explosion energy (corresponding to normal supernovae and hypernovae), and apply the results to the chemical evolution of the solar neighborhood.

744 citations

Journal ArticleDOI
TL;DR: High energy density (HED) laboratory astrophysics as discussed by the authors is a new class of experimental science, wherein the properties of matter and the processes that occur under extreme astrophysical conditions can be examined in the laboratory.
Abstract: With the advent of high-energy-density (HED) experimental facilities, such as high-energy lasers and fast Z-pinch, pulsed-power facilities, millimeter-scale quantities of matter can be placed in extreme states of density, temperature, and/or velocity. This has enabled the emergence of a new class of experimental science, HED laboratory astrophysics, wherein the properties of matter and the processes that occur under extreme astrophysical conditions can be examined in the laboratory. Areas particularly suitable to this class of experimental astrophysics include the study of opacities relevant to stellar interiors, equations of state relevant to planetary interiors, strong shock-driven nonlinear hydrodynamics and radiative dynamics relevant to supernova explosions and subsequent evolution, protostellar jets and high Mach number flows, radiatively driven molecular clouds and nonlinear photoevaporation front dynamics, and photoionized plasmas relevant to accretion disks around compact objects such as black holes and neutron stars.

650 citations

References
More filters
Journal ArticleDOI
TL;DR: This work recognizes the need for additional dissipation in any higher-order Godunov method of this type, and introduces it in such a way so as not to degrade the quality of the results.

3,892 citations


"Non-spherical core collapse superno..." refers methods in this paper

  • ...Further improvements in reducing the numerical diffusivity of the code are achieved by adopting the elaborate procedure for the flattening of interpolated profiles for the (primitive) state variables that is suggested in the Appendix of Colella & Woodward (1984)....

    [...]

  • ...The neutrino-hydrodynamics code as well as, make use of the hydrodynamics solver, an implementation of the direct Eulerian version of the Piecewise Parabolic Method (PPM) of Colella & Woodward (1984). originated from the code of Fryxell et al. (1991)....

    [...]

Journal ArticleDOI
TL;DR: In this paper, the nucleosynthetic yield of isotopes lighter than A = 66 (zinc) is determined for a grid of stellar masses and metallicities including stars of 11, 12, 13, 15, 18, 19, 20, 22, 25, 30, 35, and 40 M{sub {circle_dot}} and metals Z = 0, 10{sup {minus}4}, 0.01, 0.1, and 1 times solar (a slightly reduced mass grid is employed for non-solar metallicities).
Abstract: The nucleosynthetic yield of isotopes lighter than A = 66 (zinc) is determined for a grid of stellar masses and metallicities including stars of 11, 12, 13, 15, 18, 19, 20, 22, 25, 30, 35, and 40 M{sub {circle_dot}} and metallicities Z = 0, 10{sup {minus}4}, 0.01, 0.1, and 1 times solar (a slightly reduced mass grid is employed for non-solar metallicities). Altogether 78 different model supernova explosions are calculated. In each case nucleosynthesis has already been determined for 200 isotopes in each of 600 to 1200 zones of the presupernova star, including the effects of time dependent convection. Here each star is exploded using a piston to give a specified final kinetic energy at infinity (typically 1.2 {times} 10{sup 51} erg), and the explosive modifications to the nucleosynthesis, including the effects of neutrino irradiation, determined. A single value of the critical {sup 12}C({sub {alpha},{gamma}}){sup 16}O reaction rate corresponding to S(300 keV) = 170 keV barns is used in all calculations. The synthesis of each isotope is discussed along with its sensitivity to model parameters. In each case, the final mass of the collapsed remnant is also determined and often found not to correspond to the location of the pistonmore » (typically the edge of the iron core), but to a ``mass cut`` farther out. This mass cut is sensitive not only to the explosion energy, but also to the presupernova structure, stellar mass, and the metallicity. Unless the explosion mechanism, for unknown reasons, provides a much larger characteristic energy in more massive stars, it appears likely that stars larger than about 30 M{sub {center_dot}} will experience considerable reimplosion of heavy elements following the initial launch of a successful shock. While such explosions will produce a viable, bright Type II supernova light curve, lacking the radioactive tail, they will have dramatically reduced yields of heavy elements and may leave black hole remnants of up to 10 and more solar masses.« less

3,649 citations


"Non-spherical core collapse superno..." refers background in this paper

  • ...Since models of supernova progenitors (see e.g. Woosley & Weaver 1995) do not show a density structure that can be described by a single power-law, an unsteady shock propagation results that in turn gives rise to Rayleigh-Taylor unstable pressure and density gradients at the composition interfaces…...

    [...]

  • ...Table 1 summarizes the location of the composition interfaces and the initial position of theYe discontinuity (that defines the boundary of the iron core according to Woosley & Weaver 1995) of the resulting “hybrid” 15M progenitor....

    [...]

Journal ArticleDOI
TL;DR: An automatic, adaptive mesh refinement strategy for solving hyperbolic conservation laws in two dimensions and how to organize the algorithm to minimize memory and CPU overhead is developed.

2,650 citations


"Non-spherical core collapse superno..." refers methods in this paper

  • ...…codes to solve each of the sub-tasks described above: a modified version of the hydrodynamics code of Janka & Müller (1996) (henceforth JM96) that includes neutrino effects, and the adaptive mesh refinement (AMR) code , a FORTRAN implementation of the AMR algorithm of Berger & Colella (1989)....

    [...]

Journal ArticleDOI
TL;DR: In this article, the authors describe a new approximate Riemann solver for compressible gas flow, where a numerical approximation for the pressure and the velocity at t t is given.
Abstract: In this paper we describe a new approximate Riemann solver for compressible gas flow. In contrast to previous Riemann solvers, where a numerical approximation for the pressure and the velocity at t...

1,008 citations