scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Noncooperative Cellular Wireless with Unlimited Numbers of Base Station Antennas

Thomas L. Marzetta1
01 Nov 2010-IEEE Transactions on Wireless Communications (IEEE)-Vol. 9, Iss: 11, pp 3590-3600
TL;DR: A cellular base station serves a multiplicity of single-antenna terminals over the same time-frequency interval and a complete multi-cellular analysis yields a number of mathematically exact conclusions and points to a desirable direction towards which cellular wireless could evolve.
Abstract: A cellular base station serves a multiplicity of single-antenna terminals over the same time-frequency interval. Time-division duplex operation combined with reverse-link pilots enables the base station to estimate the reciprocal forward- and reverse-link channels. The conjugate-transpose of the channel estimates are used as a linear precoder and combiner respectively on the forward and reverse links. Propagation, unknown to both terminals and base station, comprises fast fading, log-normal shadow fading, and geometric attenuation. In the limit of an infinite number of antennas a complete multi-cellular analysis, which accounts for inter-cellular interference and the overhead and errors associated with channel-state information, yields a number of mathematically exact conclusions and points to a desirable direction towards which cellular wireless could evolve. In particular the effects of uncorrelated noise and fast fading vanish, throughput and the number of terminals are independent of the size of the cells, spectral efficiency is independent of bandwidth, and the required transmitted energy per bit vanishes. The only remaining impairment is inter-cellular interference caused by re-use of the pilot sequences in other cells (pilot contamination) which does not vanish with unlimited number of antennas.
Citations
More filters
Journal Article

88 citations


Cites methods from "Noncooperative Cellular Wireless wi..."

  • ...By continuing to evolve FD-MIMO,4 which was first introduced in LTE Advanced Pro, 5G NR will support massive MIMO [2, 3], which can utilize an even larger number of antenna elements, supporting up to 256 as currently defined....

    [...]

  • ...[2] T....

    [...]

Journal ArticleDOI
TL;DR: A brief comprehensive survey is provided on some of the current research work that contributes to enabling cyber-physical-social system (CPSS) and proposes a virtualization architecture and an integrated framework of caching, computing and networking for CPSSs.
Abstract: It is the overriding trend of the present-day world that traditional systems and mobile devices are currently transforming into intelligent systems and smart devices. Against this backdrop, cyber-physical systems (CPSs) and Internet-of-Things (IoT) emerge as the times require. To achieve the parallel interactions between the human world and the computer network, IoT along with wireless mobile communication and computing open up some future opportunities as well as challenges for constructing a novel cyber-physical-social system (CPSS) that takes human factors into account during the system operation and management. In this article, a brief comprehensive survey is provided on some of the current research work that contributes to enabling CPSSs. Some crucial aspects of CPSSs are identified, including: the development from CPSs to CPSSs, architecture design, applications, standards, real-world case studies, enabling techniques and networks for CPSSs. To lay a foundation for the development of the upcoming smart world, we further propose a virtualization architecture and an integrated framework of caching, computing and networking for CPSSs. Simulations verify the performance improvement of the proposals. At last, some research issues with challenges and possible solutions are unearthed for researchers in the related research areas.

88 citations


Cites background from "Noncooperative Cellular Wireless wi..."

  • ...spectral efficiency and network capacity [75], [76], and also a core technique to support human-type communications in...

    [...]

Journal ArticleDOI
TL;DR: How the O-RAN RAN Intelligent Controllers (RICs) can be used to effectively control and manage 3GPP-defined RANs is described and discussed.
Abstract: The Open Radio Access Network (RAN) and its embodiment through the O-RAN Alliance specifications are poised to revolutionize the telecom ecosystem. O-RAN promotes virtualized RANs where disaggregated components are connected via open interfaces and optimized by intelligent controllers. The result is a new paradigm for the RAN design, deployment, and operations: O-RAN networks can be built with multi-vendor, interoperable components, and can be programmatically optimized through a centralized abstraction layer and data-driven closed-loop control. Therefore, understanding O-RAN, its architecture, its interfaces, and workflows is key for researchers and practitioners in the wireless community. In this article, we present the first detailed tutorial on O-RAN. We also discuss the main research challenges and review early research results. We provide a deep dive of the O-RAN specifications, describing its architecture, design principles, and the O-RAN interfaces. We then describe how the O-RAN RAN Intelligent Controllers (RICs) can be used to effectively control and manage 3GPP-defined RANs. Based on this, we discuss innovations and challenges of O-RAN networks, including the Artificial Intelligence (AI) and Machine Learning (ML) workflows that the architecture and interfaces enable, security, and standardization issues. Finally, we review experimental research platforms that can be used to design and test O-RAN networks, along with recent research results, and we outline future directions for O-RAN development.

88 citations

Journal ArticleDOI
TL;DR: In this paper, the authors present an in-depth survey of state-of-the-art non-orthogonal multiple access (NOMA) variants having power and code domains as the backbone for interference mitigation, resource allocations, and QoS management in the 5G environment.
Abstract: Over the last few years, interference has been a major hurdle for successfully implementing various end-user applications in the fifth-generation (5G) of wireless networks. During this era, several communication protocols and standards have been developed and used by the community. However, interference persists, keeping given quality of service (QoS) provision to end-users for different 5G applications. To mitigate the issues mentioned above, in this paper, we present an in-depth survey of state-of-the-art non-orthogonal multiple access (NOMA) variants having power and code domains as the backbone for interference mitigation, resource allocations, and QoS management in the 5G environment. These are future smart communication and supported by device-to-device (D2D), cooperative communication (CC), multiple-input and multiple-output (MIMO), and heterogeneous networks (HetNets). From the existing literature, it has been observed that NOMA can resolve most of the issues in the existing proposals to provide contention-based grant-free transmissions between different devices. The key differences between the orthogonal multiple access (OMA) and NOMA in 5G are also discussed in detail. Moreover, several open issues and research challenges of NOMA-based applications are analyzed. Finally, a comparative analysis of different existing proposals is also discussed to provide deep insights to the readers.

88 citations

Journal ArticleDOI
TL;DR: In this article, the authors considered the detection and estimation of a zero-mean Gaussian signal in a wireless sensor network with a coherent multiple access channel, when the fusion center (FC) is configured with a large number of antennas and the wireless channels between the sensor nodes and FC experience Rayleigh fading.
Abstract: We consider the detection and estimation of a zero-mean Gaussian signal in a wireless sensor network with a coherent multiple access channel, when the fusion center (FC) is configured with a large number of antennas and the wireless channels between the sensor nodes and FC experience Rayleigh fading. For the detection problem, we study the Neyman–Pearson (NP) detector and energy detector (ED) and find optimal values for the sensor transmission gains. For the NP detector, which requires channel state information (CSI), we show that detection performance remains asymptotically constant with the number of FC antennas if the sensor transmit power decreases proportionally with the increase in the number of antennas. Performance bounds show that the benefit of multiple antennas at the FC disappears as the transmit power grows. The results of the NP detector are also generalized to the linear minimum mean-squared error estimator. For the ED, which does not require CSI, we derive optimal gains that maximize the deflection coefficient of the detector, and we show that a constant deflection can be asymptotically achieved if the sensor transmit power scales as the inverse square root of the number of FC antennas. Unlike the NP detector, for high sensor power, the multi-antenna ED is observed to empirically have significantly better performance than the single-antenna implementation. A number of simulation results are included to validate the analysis.

88 citations

References
More filters
Journal ArticleDOI
Gerard J. Foschini1
TL;DR: This paper addresses digital communication in a Rayleigh fading environment when the channel characteristic is unknown at the transmitter but is known (tracked) at the receiver with the aim of leveraging the already highly developed 1-D codec technology.
Abstract: This paper addresses digital communication in a Rayleigh fading environment when the channel characteristic is unknown at the transmitter but is known (tracked) at the receiver. Inventing a codec architecture that can realize a significant portion of the great capacity promised by information theory is essential to a standout long-term position in highly competitive arenas like fixed and indoor wireless. Use (n T , n R ) to express the number of antenna elements at the transmitter and receiver. An (n, n) analysis shows that despite the n received waves interfering randomly, capacity grows linearly with n and is enormous. With n = 8 at 1% outage and 21-dB average SNR at each receiving element, 42 b/s/Hz is achieved. The capacity is more than 40 times that of a (1, 1) system at the same total radiated transmitter power and bandwidth. Moreover, in some applications, n could be much larger than 8. In striving for significant fractions of such huge capacities, the question arises: Can one construct an (n, n) system whose capacity scales linearly with n, using as building blocks n separately coded one-dimensional (1-D) subsystems of equal capacity? With the aim of leveraging the already highly developed 1-D codec technology, this paper reports just such an invention. In this new architecture, signals are layered in space and time as suggested by a tight capacity bound.

6,812 citations


"Noncooperative Cellular Wireless wi..." refers background in this paper

  • ...A point-to-point MIMO system [2] requires expensive multiple-antenna terminals....

    [...]

Journal ArticleDOI
TL;DR: Under certain mild conditions, this scheme is found to be throughput-wise asymptotically optimal for both high and low signal-to-noise ratio (SNR), and some numerical results are provided for the ergodic throughput of the simplified zero-forcing scheme in independent Rayleigh fading.
Abstract: A Gaussian broadcast channel (GBC) with r single-antenna receivers and t antennas at the transmitter is considered. Both transmitter and receivers have perfect knowledge of the channel. Despite its apparent simplicity, this model is, in general, a nondegraded broadcast channel (BC), for which the capacity region is not fully known. For the two-user case, we find a special case of Marton's (1979) region that achieves optimal sum-rate (throughput). In brief, the transmitter decomposes the channel into two interference channels, where interference is caused by the other user signal. Users are successively encoded, such that encoding of the second user is based on the noncausal knowledge of the interference caused by the first user. The crosstalk parameters are optimized such that the overall throughput is maximum and, surprisingly, this is shown to be optimal over all possible strategies (not only with respect to Marton's achievable region). For the case of r>2 users, we find a somewhat simpler choice of Marton's region based on ordering and successively encoding the users. For each user i in the given ordering, the interference caused by users j>i is eliminated by zero forcing at the transmitter, while interference caused by users j

2,616 citations


"Noncooperative Cellular Wireless wi..." refers background in this paper

  • ...An alternative to a point-to-point MIMO system is a multiuser MIMO system [3], [4], [5], [6] in which an antenna array simultaneously serves a multiplicity of autonomous terminals....

    [...]

Book
28 Jun 2004
TL;DR: A tutorial on random matrices is provided which provides an overview of the theory and brings together in one source the most significant results recently obtained.
Abstract: Random matrix theory has found many applications in physics, statistics and engineering since its inception. Although early developments were motivated by practical experimental problems, random matrices are now used in fields as diverse as Riemann hypothesis, stochastic differential equations, condensed matter physics, statistical physics, chaotic systems, numerical linear algebra, neural networks, multivariate statistics, information theory, signal processing and small-world networks. This article provides a tutorial on random matrices which provides an overview of the theory and brings together in one source the most significant results recently obtained. Furthermore, the application of random matrix theory to the fundamental limits of wireless communication channels is described in depth.

2,308 citations


"Noncooperative Cellular Wireless wi..." refers background in this paper

  • ...It can be shown that the vector φkjΦ ∗ l has exactly the same probability distribution as does any row vector of Φl [15], [16]....

    [...]

Journal ArticleDOI
TL;DR: It is shown that the dirty paper achievable region achieves the sum-rate capacity of the MIMO BC by establishing that the maximum sum rate of this region equals an upper bound on the sum rate.
Abstract: We consider a multiuser multiple-input multiple- output (MIMO) Gaussian broadcast channel (BC), where the transmitter and receivers have multiple antennas. Since the MIMO BC is in general a nondegraded BC, its capacity region remains an unsolved problem. We establish a duality between what is termed the "dirty paper" achievable region (the Caire-Shamai (see Proc. IEEE Int. Symp. Information Theory, Washington, DC, June 2001, p.322) achievable region) for the MIMO BC and the capacity region of the MIMO multiple-access channel (MAC), which is easy to compute. Using this duality, we greatly reduce the computational complexity required for obtaining the dirty paper achievable region for the MIMO BC. We also show that the dirty paper achievable region achieves the sum-rate capacity of the MIMO BC by establishing that the maximum sum rate of this region equals an upper bound on the sum rate of the MIMO BC.

1,802 citations


"Noncooperative Cellular Wireless wi..." refers background in this paper

  • ...An alternative to a point-to-point MIMO system is a multiuser MIMO system [3], [4], [5], [6] in which an antenna array simultaneously serves a multiplicity of autonomous terminals....

    [...]