scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Noncooperative Cellular Wireless with Unlimited Numbers of Base Station Antennas

Thomas L. Marzetta1
01 Nov 2010-IEEE Transactions on Wireless Communications (IEEE)-Vol. 9, Iss: 11, pp 3590-3600
TL;DR: A cellular base station serves a multiplicity of single-antenna terminals over the same time-frequency interval and a complete multi-cellular analysis yields a number of mathematically exact conclusions and points to a desirable direction towards which cellular wireless could evolve.
Abstract: A cellular base station serves a multiplicity of single-antenna terminals over the same time-frequency interval. Time-division duplex operation combined with reverse-link pilots enables the base station to estimate the reciprocal forward- and reverse-link channels. The conjugate-transpose of the channel estimates are used as a linear precoder and combiner respectively on the forward and reverse links. Propagation, unknown to both terminals and base station, comprises fast fading, log-normal shadow fading, and geometric attenuation. In the limit of an infinite number of antennas a complete multi-cellular analysis, which accounts for inter-cellular interference and the overhead and errors associated with channel-state information, yields a number of mathematically exact conclusions and points to a desirable direction towards which cellular wireless could evolve. In particular the effects of uncorrelated noise and fast fading vanish, throughput and the number of terminals are independent of the size of the cells, spectral efficiency is independent of bandwidth, and the required transmitted energy per bit vanishes. The only remaining impairment is inter-cellular interference caused by re-use of the pilot sequences in other cells (pilot contamination) which does not vanish with unlimited number of antennas.
Citations
More filters
Journal ArticleDOI
TL;DR: It is demonstrated that the performance of the proposed method outperforms state-of-the-art techniques, regardless of type of the channel and/or system configuration, wherever the number of the antennas or type of channel is concerned.
Abstract: This paper proposes a low-complexity hybrid beamforming design for multi-antenna communication systems. The hybrid beamformer is comprised of a baseband digital beamformer and a constant modulus analog beamformer in the radio frequency (RF) part of the system. As in singular-value-decomposition (SVD)-based beamforming, hybrid beamforming design aims to generate parallel data streams in multi-antenna systems, however, due to the constant modulus constraint of the analog beamformer, the problem cannot be solved similarly. To address this problem, mathematical expressions of the parallel data streams are derived in this paper and desired and interfering signals are specified per stream. The analog beamformers are designed by maximizing the power of desired signal while minimizing the sum-power of interfering signals. Finally, digital beamformers are derived by defining the equivalent channel observed by the transmitter/receiver. Regardless of the number of the antennas or type of channel, the proposed approach can be applied to a wide range of MIMO systems with hybrid structure wherein the number of the antennas is more than the number of the RF chains. In particular, the proposed algorithm is verified for sparse channels that emulate mm-wave transmission as well as rich scattering environments. In order to validate the optimality, the results are compared with those of the state-of-the-art and it is demonstrated that the performance of the proposed method outperforms state-of-the-art techniques, regardless of type of the channel and/or system configuration.

65 citations


Cites background from "Noncooperative Cellular Wireless wi..."

  • ...Optimising hybrid (analog-digital) beamforming for a MIMO communication system was studied in this paper....

    [...]

  • ...The proposed approach with the hybrid structure was evaluated in a wide range of MIMO systems over various channels....

    [...]

  • ...This work develops a method to solve this problem in order to generalize the hybrid MIMO design for arbitrary channel and system configuration (including but not limited to mm-wave and large antenna arrays)....

    [...]

  • ...Antenna selection [5]–[7] is a widely investigated concept in MIMO communication systems, with the aim of reducing the cost and complexity of hardware by reducing the number of RF chains, yet maintaining the advantages of having “many” antennas on a transmit/receive node....

    [...]

  • ...It is worth mentioning that hybrid (analog-digital) MIMO architecture was originally proposed to reduce the hardware complexity (and cost) by reducing the RF chains, ADC, DAC and etc., however, a general beamforming configuration is still unknown except under certain circumstances such as mm-wave/sparse channels or large antenna arrays....

    [...]

Journal ArticleDOI
TL;DR: It is found that, with only low-resolution ADCs at the relay, increasing the number of relay antennas is an effective method to compensate for the rate loss caused by coarse quantization, and deploying massive relay antenna arrays can still bring significant power savings, i.e., the transmit power of each source can be cut down proportional to a constant rate.
Abstract: This paper considers a multipair amplify-and-forward massive MIMO relaying system with low-resolution analog-to-digital converters (ADCs) at both the relay and destinations. The channel state information (CSI) at the relay is obtained via pilot training, which is then utilized to perform simple maximum-ratio combining/maximum-ratio transmission processing by the relay. Also, it is assumed that the destinations use statistical CSI to decode the transmitted signals. Exact and approximated closed-form expressions for the achievable sum rate are presented, which enable the efficient evaluation of the impact of key system parameters on the system performance. In addition, optimal relay power allocation scheme is studied, and power scaling law is characterized. It is found that, with only low-resolution ADCs at the relay, increasing the number of relay antennas is an effective method to compensate for the rate loss caused by coarse quantization. However, it becomes ineffective to handle the detrimental effect of low-resolution ADCs at the destination. Moreover, it is shown that deploying massive relay antenna arrays can still bring significant power savings, i.e., the transmit power of each source can be cut down proportional to $1/M$ to maintain a constant rate, where $M$ is the number of relay antennas.

64 citations


Cites background from "Noncooperative Cellular Wireless wi..."

  • ...In parallel, the massive multipleinput multiple-output (MIMO) technique is able to significantly boost the spectral efficiency and effectively suppress interference, hence has also received great interests recently [3]–[6]....

    [...]

Journal ArticleDOI
TL;DR: This paper provides a comprehensive overview of multi-user VLC systems discussing the recent advances on multi- user precoding, multiple access, resource allocation, and mobility management and possible directions for future research in this emerging topic.
Abstract: Visible light communications (VLC) builds upon the dual use of existing lighting infrastructure for wireless data transmission VLC has recently gained interest as cost-effective, secure, and energy-efficient wireless access technology particularly for indoor user-dense environments While initial studies in this area are mainly limited to single-user point-to-point links, more recent efforts have focused on multi-user VLC systems in an effort to transform VLC into a scalable and fully networked wireless technology In this paper, we provide a comprehensive overview of multi-user VLC systems discussing the recent advances on multi-user precoding, multiple access, resource allocation, and mobility management We further provide possible directions for future research in this emerging topic

64 citations


Cites background from "Noncooperative Cellular Wireless wi..."

  • ..., large arrays of transmitting LEDs and/or receiving photodiodes) [177], [178]....

    [...]

Journal ArticleDOI
TL;DR: In this paper, the authors provide insights on linear precoding algorithms for massive MIMO systems and discuss the performance and energy efficiency of the precoders. And they also present potential future directions of linear precoder algorithms.
Abstract: Massive multiple-input multiple-output (MIMO) is playing a crucial role in the fifth generation (5G) and beyond 5G (B5G) communication systems. Unfortunately, the complexity of massive MIMO systems is tremendously increased when a large number of antennas and radio frequency chains (RF) are utilized. Therefore, a plethora of research efforts has been conducted to find the optimal precoding algorithm with lowest complexity. The main aim of this paper is to provide insights on such precoding algorithms to a generalist of wireless communications. The added value of this paper is that the classification of massive MIMO precoding algorithms is provided with easily distinguishable classes of precoding solutions. This paper covers linear precoding algorithms starting with precoders based on approximate matrix inversion methods such as the truncated polynomial expansion (TPE), the Neumann series approximation (NSA), the Newton iteration (NI), and the Chebyshev iteration (CI) algorithms. The paper also presents the fixed-point iteration-based linear precoding algorithms such as the Gauss-Seidel (GS) algorithm, the successive over relaxation (SOR) algorithm, the conjugate gradient (CG) algorithm, and the Jacobi iteration (JI) algorithm. In addition, the paper reviews the direct matrix decomposition based linear precoding algorithms such as the QR decomposition and Cholesky decomposition (CD). The non-linear precoders are also presented which include the dirty-paper coding (DPC), Tomlinson-Harashima (TH), vector perturbation (VP), and lattice reduction aided (LR) algorithms. Due to the necessity to deal with a high consuming power by the base station (BS) with a large number of antennas in massive MIMO systems, a special subsection is included to describe the characteristics of the peak-to-average power ratio precoding (PAPR) algorithms such as the constant envelope (CE) algorithm, approximate message passing (AMP), and quantized precoding (QP) algorithms. This paper also reviews the machine learning role in precoding techniques. Although many precoding techniques are essentially proposed for a small-scale MIMO, they have been exploited in massive MIMO networks. Therefore, this paper presents the application of small-scale MIMO precoding techniques for massive MIMO. This paper demonstrates the precoding schemes in promising multiple antenna technologies such as the cell-free massive MIMO (CF-M-MIMO), beamspace massive MIMO, and intelligent reflecting surfaces (IRSs). In-depth discussion on the pros and cons, performance-complexity profile, and implementation solidity is provided. This paper also provides a discussion on the channel estimation and energy efficiency. This paper also presents potential future directions in massive MIMO precoding algorithms.

64 citations

Journal ArticleDOI
TL;DR: This work derives an analytical expression for the asymptotic ergodic achievable rate of the uplink of a single-cell multi-user distributed massive multiple-input-multiple-output (MIMO) system and shows that circularly distributed massive MIMO system largely outperforms centralized massive M IMO system.
Abstract: In this paper, we analyze the achievable rate of the uplink of a single-cell multi-user distributed massive multiple-input-multiple-output (MIMO) system. The multiple users are equipped with single antenna and the base station (BS) is equipped with a large number of distributed antennas. We derive an analytical expression for the asymptotic ergodic achievable rate of the system under zero-forcing (ZF) detector. In particular, we consider circular antenna array, where the distributed BS antennas are located evenly on a circle, and derive an analytical expression and closed-form tight bounds for the achievable rate of an arbitrarily located user. Subsequently, closed-form bounds on the average achievable rate per user are obtained under the assumption that the users are uniformly located in the cell. Based on the bounds, we can understand the behavior of the system rate with respect to different parameters and find the optimal location of the circular BS antenna array that maximizes the average rate. Numerical results are provided to assess our analytical results and examine the impact of the number and the location of the BS antennas, the transmit power, and the path-loss exponent on system performance. It is shown that circularly distributed massive MIMO system largely outperforms centralized massive MIMO system.

64 citations

References
More filters
Journal ArticleDOI
Gerard J. Foschini1
TL;DR: This paper addresses digital communication in a Rayleigh fading environment when the channel characteristic is unknown at the transmitter but is known (tracked) at the receiver with the aim of leveraging the already highly developed 1-D codec technology.
Abstract: This paper addresses digital communication in a Rayleigh fading environment when the channel characteristic is unknown at the transmitter but is known (tracked) at the receiver. Inventing a codec architecture that can realize a significant portion of the great capacity promised by information theory is essential to a standout long-term position in highly competitive arenas like fixed and indoor wireless. Use (n T , n R ) to express the number of antenna elements at the transmitter and receiver. An (n, n) analysis shows that despite the n received waves interfering randomly, capacity grows linearly with n and is enormous. With n = 8 at 1% outage and 21-dB average SNR at each receiving element, 42 b/s/Hz is achieved. The capacity is more than 40 times that of a (1, 1) system at the same total radiated transmitter power and bandwidth. Moreover, in some applications, n could be much larger than 8. In striving for significant fractions of such huge capacities, the question arises: Can one construct an (n, n) system whose capacity scales linearly with n, using as building blocks n separately coded one-dimensional (1-D) subsystems of equal capacity? With the aim of leveraging the already highly developed 1-D codec technology, this paper reports just such an invention. In this new architecture, signals are layered in space and time as suggested by a tight capacity bound.

6,812 citations


"Noncooperative Cellular Wireless wi..." refers background in this paper

  • ...A point-to-point MIMO system [2] requires expensive multiple-antenna terminals....

    [...]

Journal ArticleDOI
TL;DR: Under certain mild conditions, this scheme is found to be throughput-wise asymptotically optimal for both high and low signal-to-noise ratio (SNR), and some numerical results are provided for the ergodic throughput of the simplified zero-forcing scheme in independent Rayleigh fading.
Abstract: A Gaussian broadcast channel (GBC) with r single-antenna receivers and t antennas at the transmitter is considered. Both transmitter and receivers have perfect knowledge of the channel. Despite its apparent simplicity, this model is, in general, a nondegraded broadcast channel (BC), for which the capacity region is not fully known. For the two-user case, we find a special case of Marton's (1979) region that achieves optimal sum-rate (throughput). In brief, the transmitter decomposes the channel into two interference channels, where interference is caused by the other user signal. Users are successively encoded, such that encoding of the second user is based on the noncausal knowledge of the interference caused by the first user. The crosstalk parameters are optimized such that the overall throughput is maximum and, surprisingly, this is shown to be optimal over all possible strategies (not only with respect to Marton's achievable region). For the case of r>2 users, we find a somewhat simpler choice of Marton's region based on ordering and successively encoding the users. For each user i in the given ordering, the interference caused by users j>i is eliminated by zero forcing at the transmitter, while interference caused by users j

2,616 citations


"Noncooperative Cellular Wireless wi..." refers background in this paper

  • ...An alternative to a point-to-point MIMO system is a multiuser MIMO system [3], [4], [5], [6] in which an antenna array simultaneously serves a multiplicity of autonomous terminals....

    [...]

Book
28 Jun 2004
TL;DR: A tutorial on random matrices is provided which provides an overview of the theory and brings together in one source the most significant results recently obtained.
Abstract: Random matrix theory has found many applications in physics, statistics and engineering since its inception. Although early developments were motivated by practical experimental problems, random matrices are now used in fields as diverse as Riemann hypothesis, stochastic differential equations, condensed matter physics, statistical physics, chaotic systems, numerical linear algebra, neural networks, multivariate statistics, information theory, signal processing and small-world networks. This article provides a tutorial on random matrices which provides an overview of the theory and brings together in one source the most significant results recently obtained. Furthermore, the application of random matrix theory to the fundamental limits of wireless communication channels is described in depth.

2,308 citations


"Noncooperative Cellular Wireless wi..." refers background in this paper

  • ...It can be shown that the vector φkjΦ ∗ l has exactly the same probability distribution as does any row vector of Φl [15], [16]....

    [...]

Journal ArticleDOI
TL;DR: It is shown that the dirty paper achievable region achieves the sum-rate capacity of the MIMO BC by establishing that the maximum sum rate of this region equals an upper bound on the sum rate.
Abstract: We consider a multiuser multiple-input multiple- output (MIMO) Gaussian broadcast channel (BC), where the transmitter and receivers have multiple antennas. Since the MIMO BC is in general a nondegraded BC, its capacity region remains an unsolved problem. We establish a duality between what is termed the "dirty paper" achievable region (the Caire-Shamai (see Proc. IEEE Int. Symp. Information Theory, Washington, DC, June 2001, p.322) achievable region) for the MIMO BC and the capacity region of the MIMO multiple-access channel (MAC), which is easy to compute. Using this duality, we greatly reduce the computational complexity required for obtaining the dirty paper achievable region for the MIMO BC. We also show that the dirty paper achievable region achieves the sum-rate capacity of the MIMO BC by establishing that the maximum sum rate of this region equals an upper bound on the sum rate of the MIMO BC.

1,802 citations


"Noncooperative Cellular Wireless wi..." refers background in this paper

  • ...An alternative to a point-to-point MIMO system is a multiuser MIMO system [3], [4], [5], [6] in which an antenna array simultaneously serves a multiplicity of autonomous terminals....

    [...]