scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Noncooperative Cellular Wireless with Unlimited Numbers of Base Station Antennas

Thomas L. Marzetta1
01 Nov 2010-IEEE Transactions on Wireless Communications (IEEE)-Vol. 9, Iss: 11, pp 3590-3600
TL;DR: A cellular base station serves a multiplicity of single-antenna terminals over the same time-frequency interval and a complete multi-cellular analysis yields a number of mathematically exact conclusions and points to a desirable direction towards which cellular wireless could evolve.
Abstract: A cellular base station serves a multiplicity of single-antenna terminals over the same time-frequency interval. Time-division duplex operation combined with reverse-link pilots enables the base station to estimate the reciprocal forward- and reverse-link channels. The conjugate-transpose of the channel estimates are used as a linear precoder and combiner respectively on the forward and reverse links. Propagation, unknown to both terminals and base station, comprises fast fading, log-normal shadow fading, and geometric attenuation. In the limit of an infinite number of antennas a complete multi-cellular analysis, which accounts for inter-cellular interference and the overhead and errors associated with channel-state information, yields a number of mathematically exact conclusions and points to a desirable direction towards which cellular wireless could evolve. In particular the effects of uncorrelated noise and fast fading vanish, throughput and the number of terminals are independent of the size of the cells, spectral efficiency is independent of bandwidth, and the required transmitted energy per bit vanishes. The only remaining impairment is inter-cellular interference caused by re-use of the pilot sequences in other cells (pilot contamination) which does not vanish with unlimited number of antennas.
Citations
More filters
Journal ArticleDOI
TL;DR: The max–min fairness (MMF) problem is studied, where channel state information at the transmitter is used to design precoding vectors that maximize the minimum spectral efficiency (SE) of the system, given fixed power budgets for uplink training and downlink transmission.
Abstract: This paper considers the downlink precoding for physical layer multicasting in massive multiple-input multiple-output (MIMO) systems. We study the max–min fairness (MMF) problem, where channel state information at the transmitter is used to design precoding vectors that maximize the minimum spectral efficiency (SE) of the system, given fixed power budgets for uplink training and downlink transmission. Our system model accounts for channel estimation, pilot contamination, arbitrary path-losses, and multi-group multicasting. We consider six scenarios with different transmission technologies (unicast and multicast), different pilot assignment strategies (dedicated or shared pilot assignments), and different precoding schemes (maximum ratio transmission and zero forcing), and derive achievable spectral efficiencies for all possible combinations. Then, we solve the MMF problem for each of these scenarios, and for any given pilot length, we find the SE maximizing uplink pilot and downlink data transmission policies, all in closed forms. We use these results to draw a general guideline for massive MIMO multicasting design, where for a given number of base station antennas, number of users, and coherence interval length, we determine the multicasting scheme that shall be used.

64 citations


Cites background from "Noncooperative Cellular Wireless wi..."

  • ...massive MIMO systems where they deploy hundreds of antennas [10]....

    [...]

Journal ArticleDOI
TL;DR: In this article, the authors performed a large system analysis when the receiver employs an MMSE filter with a pilot contaminated estimate and derived the asymptotic signal to interference plus noise ratio (SINR) as the number of antennas and number of users per base station grows larger.
Abstract: Base stations with a large number of transmit antennas can potentially serve a large number of users at high rates. However, the receiver processing in the uplink relies on channel estimates, which are known to suffer from pilot interference. In this paper, making use of the similarity of the uplink received signal in CDMA with that of a multi-cell multi-antenna system, we perform a large system analysis when the receiver employs an MMSE filter with a pilot contaminated estimate. We assume a Rayleigh fading channel with different received powers from users. We find the asymptotic signal to interference plus noise ratio (SINR) as the number of antennas and number of users per base station grow larger while maintaining a fixed ratio. Through the SINR expression we explore the scenario where the number of users being served are comparable to the number of antennas at the base station. The SINR explicitly captures the effect of pilot contamination and is found to be the same as that employing a matched filter with a pilot contaminated estimate. We also find the exact expression for the interference suppression obtained using an MMSE filter, which is an important factor when there are a significant number of users in the system as compared to the number of antennas. In a typical set up, in terms of the five percentile SINR, the MMSE filter is shown to provide significant gains over matched filtering and is within 5 dB of MMSE filter with perfect channel estimate. Simulation results for achievable rates are close to large system limits for even a 10-antenna base station with 3 or more users per cell.

63 citations

Journal ArticleDOI
TL;DR: In this article, two approaches to covariance estimation based on compressive sensing techniques are proposed for hybrid multiple-input-multiple-output (MIMO) architectures, where the estimator operating at baseband can only obtain a lower dimensional pre-combined signal through fewer radio frequency chains than antennas.
Abstract: Spatial channel covariance information can replace full knowledge of the entire channel matrix for designing analog precoders in hybrid multiple-input-multiple-output (MIMO) architecture. Spatial channel covariance estimation, however, is challenging for the hybrid MIMO architecture because the estimator operating at baseband can only obtain a lower dimensional pre-combined signal through fewer radio frequency chains than antennas. In this paper, we propose two approaches to covariance estimation based on compressive sensing techniques. One is to apply a time-varying sensing matrix, and the other is to exploit the prior knowledge that the covariance matrix is Hermitian. We present the rationale behind the two ideas and validate the superiority of the proposed methods by theoretical analysis and numerical simulations. We conclude the paper by extending the proposed algorithms from narrowband MIMO systems with a single receive antenna to wideband systems with multiple receive antennas.

63 citations

Journal ArticleDOI
TL;DR: This paper analyzes how the distortion created by hardware impairments in a multiple-antenna base station affects the uplink spectral efficiency (SE), with a focus on massive multiple input multiple output (MIMO).
Abstract: This paper analyzes how the distortion created by hardware impairments in a multiple-antenna base station affects the uplink spectral efficiency (SE), with a focus on massive multiple input multiple output (MIMO). This distortion is correlated across the antennas but has been often approximated as uncorrelated to facilitate (tractable) SE analysis. To determine when this approximation is accurate, basic properties of distortion correlation are first uncovered. Then, we separately analyze the distortion correlation caused by third-order non-linearities and by quantization. Finally, we study the SE numerically and show that the distortion correlation can be safely neglected in massive MIMO when there are sufficiently many users. Under independent identically distributed Rayleigh fading and equal signal-to-noise ratios (SNRs), this occurs for more than five transmitting users. Other channel models and SNR variations have only minor impact on the accuracy. We also demonstrate the importance of taking the distortion characteristics into account in the receive combining.

63 citations


Cites background or methods from "Noncooperative Cellular Wireless wi..."

  • ...In Massive MIMO, a base station (BS) with M antennas is used to serve K user equipments (UEs) by spatial multiplexing [7]–[9]....

    [...]

  • ...While the achievable per-cell SE was initially believed to be upper limited by pilot contamination [9], it has recently been shown that the spatial channel correlation that is present in any practical channel can be exploited to alleviate that effect [11]–[13]....

    [...]

Journal ArticleDOI
TL;DR: A large system analysis when the receiver employs an MMSE filter with a pilot contaminated estimate is performed, which finds the asymptotic signal to interference plus noise ratio (SINR) as the number of antennas and number of users per base station grow larger while maintaining a fixed ratio.
Abstract: Base stations with a large number of transmit antennas have the potential to serve a large number of users at high rates However, the receiver processing in the uplink relies on channel estimates which are known to suffer from pilot interference In this work, making use of the similarity of the uplink received signal in CDMA with that of a multi-cell multi-antenna system, we perform a large system analysis when the receiver employs an MMSE filter with a pilot contaminated estimate We assume a Rayleigh fading channel with different received powers from users We find the asymptotic Signal to Interference plus Noise Ratio (SINR) as the number of antennas and number of users per base station grow large while maintaining a fixed ratio Through the SINR expression we explore the scenario where the number of users being served are comparable to the number of antennas at the base station The SINR explicitly captures the effect of pilot contamination and is found to be the same as that employing a matched filter with a pilot contaminated estimate We also find the exact expression for the interference suppression obtained using an MMSE filter which is an important factor when there are significant number of users in the system as compared to the number of antennas In a typical set up, in terms of the five percentile SINR, the MMSE filter is shown to provide significant gains over matched filtering and is within 5 dB of MMSE filter with perfect channel estimate Simulation results for achievable rates are close to large system limits for even a 10-antenna base station with 3 or more users per cell

63 citations

References
More filters
Journal ArticleDOI
Gerard J. Foschini1
TL;DR: This paper addresses digital communication in a Rayleigh fading environment when the channel characteristic is unknown at the transmitter but is known (tracked) at the receiver with the aim of leveraging the already highly developed 1-D codec technology.
Abstract: This paper addresses digital communication in a Rayleigh fading environment when the channel characteristic is unknown at the transmitter but is known (tracked) at the receiver. Inventing a codec architecture that can realize a significant portion of the great capacity promised by information theory is essential to a standout long-term position in highly competitive arenas like fixed and indoor wireless. Use (n T , n R ) to express the number of antenna elements at the transmitter and receiver. An (n, n) analysis shows that despite the n received waves interfering randomly, capacity grows linearly with n and is enormous. With n = 8 at 1% outage and 21-dB average SNR at each receiving element, 42 b/s/Hz is achieved. The capacity is more than 40 times that of a (1, 1) system at the same total radiated transmitter power and bandwidth. Moreover, in some applications, n could be much larger than 8. In striving for significant fractions of such huge capacities, the question arises: Can one construct an (n, n) system whose capacity scales linearly with n, using as building blocks n separately coded one-dimensional (1-D) subsystems of equal capacity? With the aim of leveraging the already highly developed 1-D codec technology, this paper reports just such an invention. In this new architecture, signals are layered in space and time as suggested by a tight capacity bound.

6,812 citations


"Noncooperative Cellular Wireless wi..." refers background in this paper

  • ...A point-to-point MIMO system [2] requires expensive multiple-antenna terminals....

    [...]

Journal ArticleDOI
TL;DR: Under certain mild conditions, this scheme is found to be throughput-wise asymptotically optimal for both high and low signal-to-noise ratio (SNR), and some numerical results are provided for the ergodic throughput of the simplified zero-forcing scheme in independent Rayleigh fading.
Abstract: A Gaussian broadcast channel (GBC) with r single-antenna receivers and t antennas at the transmitter is considered. Both transmitter and receivers have perfect knowledge of the channel. Despite its apparent simplicity, this model is, in general, a nondegraded broadcast channel (BC), for which the capacity region is not fully known. For the two-user case, we find a special case of Marton's (1979) region that achieves optimal sum-rate (throughput). In brief, the transmitter decomposes the channel into two interference channels, where interference is caused by the other user signal. Users are successively encoded, such that encoding of the second user is based on the noncausal knowledge of the interference caused by the first user. The crosstalk parameters are optimized such that the overall throughput is maximum and, surprisingly, this is shown to be optimal over all possible strategies (not only with respect to Marton's achievable region). For the case of r>2 users, we find a somewhat simpler choice of Marton's region based on ordering and successively encoding the users. For each user i in the given ordering, the interference caused by users j>i is eliminated by zero forcing at the transmitter, while interference caused by users j

2,616 citations


"Noncooperative Cellular Wireless wi..." refers background in this paper

  • ...An alternative to a point-to-point MIMO system is a multiuser MIMO system [3], [4], [5], [6] in which an antenna array simultaneously serves a multiplicity of autonomous terminals....

    [...]

Book
28 Jun 2004
TL;DR: A tutorial on random matrices is provided which provides an overview of the theory and brings together in one source the most significant results recently obtained.
Abstract: Random matrix theory has found many applications in physics, statistics and engineering since its inception. Although early developments were motivated by practical experimental problems, random matrices are now used in fields as diverse as Riemann hypothesis, stochastic differential equations, condensed matter physics, statistical physics, chaotic systems, numerical linear algebra, neural networks, multivariate statistics, information theory, signal processing and small-world networks. This article provides a tutorial on random matrices which provides an overview of the theory and brings together in one source the most significant results recently obtained. Furthermore, the application of random matrix theory to the fundamental limits of wireless communication channels is described in depth.

2,308 citations


"Noncooperative Cellular Wireless wi..." refers background in this paper

  • ...It can be shown that the vector φkjΦ ∗ l has exactly the same probability distribution as does any row vector of Φl [15], [16]....

    [...]

Journal ArticleDOI
TL;DR: It is shown that the dirty paper achievable region achieves the sum-rate capacity of the MIMO BC by establishing that the maximum sum rate of this region equals an upper bound on the sum rate.
Abstract: We consider a multiuser multiple-input multiple- output (MIMO) Gaussian broadcast channel (BC), where the transmitter and receivers have multiple antennas. Since the MIMO BC is in general a nondegraded BC, its capacity region remains an unsolved problem. We establish a duality between what is termed the "dirty paper" achievable region (the Caire-Shamai (see Proc. IEEE Int. Symp. Information Theory, Washington, DC, June 2001, p.322) achievable region) for the MIMO BC and the capacity region of the MIMO multiple-access channel (MAC), which is easy to compute. Using this duality, we greatly reduce the computational complexity required for obtaining the dirty paper achievable region for the MIMO BC. We also show that the dirty paper achievable region achieves the sum-rate capacity of the MIMO BC by establishing that the maximum sum rate of this region equals an upper bound on the sum rate of the MIMO BC.

1,802 citations


"Noncooperative Cellular Wireless wi..." refers background in this paper

  • ...An alternative to a point-to-point MIMO system is a multiuser MIMO system [3], [4], [5], [6] in which an antenna array simultaneously serves a multiplicity of autonomous terminals....

    [...]