scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Noncooperative Cellular Wireless with Unlimited Numbers of Base Station Antennas

Thomas L. Marzetta1
01 Nov 2010-IEEE Transactions on Wireless Communications (IEEE)-Vol. 9, Iss: 11, pp 3590-3600
TL;DR: A cellular base station serves a multiplicity of single-antenna terminals over the same time-frequency interval and a complete multi-cellular analysis yields a number of mathematically exact conclusions and points to a desirable direction towards which cellular wireless could evolve.
Abstract: A cellular base station serves a multiplicity of single-antenna terminals over the same time-frequency interval. Time-division duplex operation combined with reverse-link pilots enables the base station to estimate the reciprocal forward- and reverse-link channels. The conjugate-transpose of the channel estimates are used as a linear precoder and combiner respectively on the forward and reverse links. Propagation, unknown to both terminals and base station, comprises fast fading, log-normal shadow fading, and geometric attenuation. In the limit of an infinite number of antennas a complete multi-cellular analysis, which accounts for inter-cellular interference and the overhead and errors associated with channel-state information, yields a number of mathematically exact conclusions and points to a desirable direction towards which cellular wireless could evolve. In particular the effects of uncorrelated noise and fast fading vanish, throughput and the number of terminals are independent of the size of the cells, spectral efficiency is independent of bandwidth, and the required transmitted energy per bit vanishes. The only remaining impairment is inter-cellular interference caused by re-use of the pilot sequences in other cells (pilot contamination) which does not vanish with unlimited number of antennas.
Citations
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors investigated a low-complexity WPT scheme based on the retrodirective beamforming technique, where all receivers send a common beacon signal simultaneously to the ET in the uplink and the ET simply conjugates and amplifies its received sum-signal and transmits to all receivers in the downlink for WPT.
Abstract: This letter studies a radio-frequency multi-user wireless power transfer (WPT) system, where an energy transmitter (ET) with a large number of antennas delivers energy wirelessly to multiple distributed energy receivers (ERs). We investigate a low-complexity WPT scheme based on the retrodirective beamforming technique, where all ERs send a common beacon signal simultaneously to the ET in the uplink and the ET simply conjugates and amplifies its received sum-signal and transmits to all ERs in the downlink for WPT. We show that such a low-complexity scheme achieves the massive multiple-input multiple-output energy beamforming gain. However, a “doubly near-far” issue exists due to the round-trip (uplink beacon and downlink WPT) signal propagation loss where the harvested power of a far ER from the ET can be significantly lower than that of a near ER if the same uplink beacon power is used. To tackle this problem, we propose a distributed uplink beacon power update algorithm, where each ER independently adjusts the beacon power based on its current harvested power in an iterative manner. It is shown that the proposed algorithm converges quickly to a unique fixed-point solution, which helps achieve the desired user fairness with best efforts.

52 citations

Journal ArticleDOI
TL;DR: The downlink (DL) of a non-orthogonal-multiple-access (NOMA)-based cell-free massive multiple-input multiple-output (MIMO) system is analyzed, where the channel state information (CSI) is estimated using pilots.
Abstract: The downlink (DL) of a non-orthogonal-multiple-access (NOMA)-based cell-free massive multiple-input multiple-output (MIMO) system is analyzed, where the channel state information (CSI) is estimated using pilots. It is assumed that the users are grouped into multiple clusters. The same pilot sequences are assigned to the users within the same clusters whereas the pilots allocated to all clusters are mutually orthogonal. First, a user’s bandwidth efficiency (BE) is derived based on his/her channel statistics under the assumption of employing successive interference cancellation (SIC) at the users’ end with no DL training. Next, the classic max-min optimization framework is invoked for maximizing the minimum BE of a user under per-access point (AP) power constraints. The max-min user BE of NOMA-based cell-free massive MIMO is compared to that of its orthogonal multiple-access (OMA) counter part, where all users employ orthogonal pilots. Finally, our numerical results are presented and an operating mode switching scheme is proposed based on the average per-user BE of the system, where the mode set is given by Mode = { OMA, NOMA }. Our numerical results confirm that the switching point between the NOMA and OMA modes depends both on the length of the channel’s coherence time and on the total number of users.

52 citations


Cites background from "Noncooperative Cellular Wireless wi..."

  • ...In [30], Marzetta characterized the performance of massive MIMO systems in the context of time division duplexing (TDD), which has widely inspired the community [31], which is capable of outperforming frequency division duplexing (FDD)....

    [...]

Posted Content
TL;DR: In this paper, three pilot access protocols along with data transmission protocols are described, fulfilling different requirements of 5G services, including fast access with high data rates, and delay-tolerant access with different data rate levels.
Abstract: 5G wireless networks are expected to support new services with stringent requirements on data rates, latency and reliability. One novel feature is the ability to serve a dense crowd of devices, calling for radically new ways of accessing the network. This is the case in machine-type communications, but also in urban environments and hotspots. In those use cases, the high number of devices and the relatively short channel coherence interval do not allow per-device allocation of orthogonal pilot sequences. This article motivates the need for random access by the devices to pilot sequences used for channel estimation, and shows that Massive MIMO is a main enabler to achieve fast access with high data rates, and delay-tolerant access with different data rate levels. Three pilot access protocols along with data transmission protocols are described, fulfilling different requirements of 5G services.

52 citations

Proceedings ArticleDOI
Boon Loong Ng1, Younsun Kim1, Ju-Ho Lee1, Yang Li1, Young-Han Nam1, Jianzhong Zhang1, Krishna Sayana1 
01 Dec 2012
TL;DR: A 3-Dimensional Spatial Channel Model (3D SCM) is developed to facilitate accurate performance evaluation and to build insights for system design and results show that 2-5 times cell average throughput gain and 1-9 times cell edge throughput gain can be achieved compared to the 4G LTE system.
Abstract: In this paper, we study practical 2-Dimensional (2D) active antenna array configurations for Massive MIMO systems and evaluate the system-level performance with the form factor at the base stations operating in cellular frequency band. To this end, we develop a 3-Dimensional Spatial Channel Model (3D SCM) to facilitate accurate performance evaluation and to build insights for system design. System-level simulation is conducted for various 2D antenna array configurations (8Hx8V, 8Hx4V) by using the 3D SCM developed. Simulation results show that 2–5 times cell average throughput gain and 1.5–9 times cell edge throughput gain can be achieved compared to the 4G LTE system.

52 citations


Cites background from "Noncooperative Cellular Wireless wi..."

  • ...For the reference configuration (i.e., configuration A), the base stations and UEs follow 3GPP LTE Release 8 process for CSI feedback, and rank and precoder selection....

    [...]

  • ...As we shall see in the next section, the small variance of the elevation spread of UEs has a significant impact on the performance gain of the 2D antenna array system and is a key consideration in the array design and system design of Massive MIMO....

    [...]

  • ...The second reason is that the angle spread for the UEs is much narrower in the elevation domain than in the azimuth domain, making it more difficult to spatially separate the UEs with correlated antenna array, as we already have seen from Figure 6....

    [...]

  • ...Another appealing feature of Massive MIMO is that a simple precoding strategy such as the channel-conjugate precoding is sufficient to achieve the spectral efficiency gain [1]....

    [...]

  • ...The first reason is that spatial separation of UEs in the case of a 1D antenna array is better than 2D antenna array because of narrower azimuth beamwidth....

    [...]

Posted Content
TL;DR: The challenges in creating a trustworthy 6G are multidisciplinary spanning technology, regulation, techno-economics, politics and ethics, and the fundamental research challenges are addressed.
Abstract: The roles of trust, security and privacy are somewhat interconnected, but different facets of next generation networks. The challenges in creating a trustworthy 6G are multidisciplinary spanning technology, regulation, techno-economics, politics and ethics. This white paper addresses their fundamental research challenges in three key areas. Trust: Under the current "open internet" regulation, the telco cloud can be used for trust services only equally for all users. 6G network must support embedded trust for increased level of information security in 6G. Trust modeling, trust policies and trust mechanisms need to be defined. 6G interlinks physical and digital worlds making safety dependent on information security. Therefore, we need trustworthy 6G. Security: In 6G era, the dependence of the economy and societies on IT and the networks will deepen. The role of IT and the networks in national security keeps rising - a continuation of what we see in 5G. The development towards cloud and edge native infrastructures is expected to continue in 6G networks, and we need holistic 6G network security architecture planning. Security automation opens new questions: machine learning can be used to make safer systems, but also more dangerous attacks. Physical layer security techniques can also represent efficient solutions for securing less investigated network segments as first line of defense. Privacy: There is currently no way to unambiguously determine when linked, deidentified datasets cross the threshold to become personally identifiable. Courts in different parts of the world are making decisions about whether privacy is being infringed, while companies are seeking new ways to exploit private data to create new business revenues. As solution alternatives, we may consider blockchain, distributed ledger technologies and differential privacy approaches.

52 citations

References
More filters
Journal ArticleDOI
Gerard J. Foschini1
TL;DR: This paper addresses digital communication in a Rayleigh fading environment when the channel characteristic is unknown at the transmitter but is known (tracked) at the receiver with the aim of leveraging the already highly developed 1-D codec technology.
Abstract: This paper addresses digital communication in a Rayleigh fading environment when the channel characteristic is unknown at the transmitter but is known (tracked) at the receiver. Inventing a codec architecture that can realize a significant portion of the great capacity promised by information theory is essential to a standout long-term position in highly competitive arenas like fixed and indoor wireless. Use (n T , n R ) to express the number of antenna elements at the transmitter and receiver. An (n, n) analysis shows that despite the n received waves interfering randomly, capacity grows linearly with n and is enormous. With n = 8 at 1% outage and 21-dB average SNR at each receiving element, 42 b/s/Hz is achieved. The capacity is more than 40 times that of a (1, 1) system at the same total radiated transmitter power and bandwidth. Moreover, in some applications, n could be much larger than 8. In striving for significant fractions of such huge capacities, the question arises: Can one construct an (n, n) system whose capacity scales linearly with n, using as building blocks n separately coded one-dimensional (1-D) subsystems of equal capacity? With the aim of leveraging the already highly developed 1-D codec technology, this paper reports just such an invention. In this new architecture, signals are layered in space and time as suggested by a tight capacity bound.

6,812 citations


"Noncooperative Cellular Wireless wi..." refers background in this paper

  • ...A point-to-point MIMO system [2] requires expensive multiple-antenna terminals....

    [...]

Journal ArticleDOI
TL;DR: Under certain mild conditions, this scheme is found to be throughput-wise asymptotically optimal for both high and low signal-to-noise ratio (SNR), and some numerical results are provided for the ergodic throughput of the simplified zero-forcing scheme in independent Rayleigh fading.
Abstract: A Gaussian broadcast channel (GBC) with r single-antenna receivers and t antennas at the transmitter is considered. Both transmitter and receivers have perfect knowledge of the channel. Despite its apparent simplicity, this model is, in general, a nondegraded broadcast channel (BC), for which the capacity region is not fully known. For the two-user case, we find a special case of Marton's (1979) region that achieves optimal sum-rate (throughput). In brief, the transmitter decomposes the channel into two interference channels, where interference is caused by the other user signal. Users are successively encoded, such that encoding of the second user is based on the noncausal knowledge of the interference caused by the first user. The crosstalk parameters are optimized such that the overall throughput is maximum and, surprisingly, this is shown to be optimal over all possible strategies (not only with respect to Marton's achievable region). For the case of r>2 users, we find a somewhat simpler choice of Marton's region based on ordering and successively encoding the users. For each user i in the given ordering, the interference caused by users j>i is eliminated by zero forcing at the transmitter, while interference caused by users j

2,616 citations


"Noncooperative Cellular Wireless wi..." refers background in this paper

  • ...An alternative to a point-to-point MIMO system is a multiuser MIMO system [3], [4], [5], [6] in which an antenna array simultaneously serves a multiplicity of autonomous terminals....

    [...]

Book
28 Jun 2004
TL;DR: A tutorial on random matrices is provided which provides an overview of the theory and brings together in one source the most significant results recently obtained.
Abstract: Random matrix theory has found many applications in physics, statistics and engineering since its inception. Although early developments were motivated by practical experimental problems, random matrices are now used in fields as diverse as Riemann hypothesis, stochastic differential equations, condensed matter physics, statistical physics, chaotic systems, numerical linear algebra, neural networks, multivariate statistics, information theory, signal processing and small-world networks. This article provides a tutorial on random matrices which provides an overview of the theory and brings together in one source the most significant results recently obtained. Furthermore, the application of random matrix theory to the fundamental limits of wireless communication channels is described in depth.

2,308 citations


"Noncooperative Cellular Wireless wi..." refers background in this paper

  • ...It can be shown that the vector φkjΦ ∗ l has exactly the same probability distribution as does any row vector of Φl [15], [16]....

    [...]

Journal ArticleDOI
TL;DR: It is shown that the dirty paper achievable region achieves the sum-rate capacity of the MIMO BC by establishing that the maximum sum rate of this region equals an upper bound on the sum rate.
Abstract: We consider a multiuser multiple-input multiple- output (MIMO) Gaussian broadcast channel (BC), where the transmitter and receivers have multiple antennas. Since the MIMO BC is in general a nondegraded BC, its capacity region remains an unsolved problem. We establish a duality between what is termed the "dirty paper" achievable region (the Caire-Shamai (see Proc. IEEE Int. Symp. Information Theory, Washington, DC, June 2001, p.322) achievable region) for the MIMO BC and the capacity region of the MIMO multiple-access channel (MAC), which is easy to compute. Using this duality, we greatly reduce the computational complexity required for obtaining the dirty paper achievable region for the MIMO BC. We also show that the dirty paper achievable region achieves the sum-rate capacity of the MIMO BC by establishing that the maximum sum rate of this region equals an upper bound on the sum rate of the MIMO BC.

1,802 citations


"Noncooperative Cellular Wireless wi..." refers background in this paper

  • ...An alternative to a point-to-point MIMO system is a multiuser MIMO system [3], [4], [5], [6] in which an antenna array simultaneously serves a multiplicity of autonomous terminals....

    [...]