scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Noncooperative Cellular Wireless with Unlimited Numbers of Base Station Antennas

Thomas L. Marzetta1
01 Nov 2010-IEEE Transactions on Wireless Communications (IEEE)-Vol. 9, Iss: 11, pp 3590-3600
TL;DR: A cellular base station serves a multiplicity of single-antenna terminals over the same time-frequency interval and a complete multi-cellular analysis yields a number of mathematically exact conclusions and points to a desirable direction towards which cellular wireless could evolve.
Abstract: A cellular base station serves a multiplicity of single-antenna terminals over the same time-frequency interval. Time-division duplex operation combined with reverse-link pilots enables the base station to estimate the reciprocal forward- and reverse-link channels. The conjugate-transpose of the channel estimates are used as a linear precoder and combiner respectively on the forward and reverse links. Propagation, unknown to both terminals and base station, comprises fast fading, log-normal shadow fading, and geometric attenuation. In the limit of an infinite number of antennas a complete multi-cellular analysis, which accounts for inter-cellular interference and the overhead and errors associated with channel-state information, yields a number of mathematically exact conclusions and points to a desirable direction towards which cellular wireless could evolve. In particular the effects of uncorrelated noise and fast fading vanish, throughput and the number of terminals are independent of the size of the cells, spectral efficiency is independent of bandwidth, and the required transmitted energy per bit vanishes. The only remaining impairment is inter-cellular interference caused by re-use of the pilot sequences in other cells (pilot contamination) which does not vanish with unlimited number of antennas.
Citations
More filters
Posted Content
TL;DR: In this paper, the authors studied the design of an efficient channel acquisition method for a point-to-point multiple-input multiple-output (MIMO) WET system by exploiting the channel reciprocity, i.e., the ET estimates the CSI via dedicated reverse-link training from the energy receiver.
Abstract: Radio-frequency (RF) enabled wireless energy transfer (WET), as a promising solution to provide cost-effective and reliable power supplies for energy-constrained wireless networks, has drawn growing interests recently. To overcome the significant propagation loss over distance, employing multi-antennas at the energy transmitter (ET) to more efficiently direct wireless energy to desired energy receivers (ERs), termed \emph{energy beamforming}, is an essential technique for enabling WET. However, the achievable gain of energy beamforming crucially depends on the available channel state information (CSI) at the ET, which needs to be acquired practically. In this paper, we study the design of an efficient channel acquisition method for a point-to-point multiple-input multiple-output (MIMO) WET system by exploiting the channel reciprocity, i.e., the ET estimates the CSI via dedicated reverse-link training from the ER. Considering the limited energy availability at the ER, the training strategy should be carefully designed so that the channel can be estimated with sufficient accuracy, and yet without consuming excessive energy at the ER. To this end, we propose to maximize the \emph{net} harvested energy at the ER, which is the average harvested energy offset by that used for channel training. An optimization problem is formulated for the training design over MIMO Rician fading channels, including the subset of ER antennas to be trained, as well as the training time and power allocated. Closed-form solutions are obtained for some special scenarios, based on which useful insights are drawn on when training should be employed to improve the net transferred energy in MIMO WET systems.

176 citations

Journal ArticleDOI
TL;DR: A single carrier transmission scheme is presented for the frequency selective multi-user (MU) multiple-input single-output (MISO) Gaussian Broadcast Channel with a base station having M antennas and K single antenna users and achieves near optimal sum-rate performance at low transmit power to receiver noise power ratio.
Abstract: A single carrier transmission scheme is presented for the frequency selective multi-user (MU) multiple-input single-output (MISO) Gaussian Broadcast Channel (GBC) with a base station (BS) having M antennas and K single antenna users. The proposed transmission scheme has low complexity and for M ≥ K it is shown to achieve near optimal sum-rate performance at low transmit power to receiver noise power ratio. Additionally, the proposed transmission scheme results in an equalization-free receiver and does not require any MU resource allocation and associated control signaling overhead. Also, the sum-rate achieved by the proposed transmission scheme is shown to be independent of the channel power delay profile (PDP). In terms of power efficiency, the proposed transmission scheme also exhibits an O(M) array power gain. Simulations are used to confirm analytical observations.

176 citations


Cites background or result from "Noncooperative Cellular Wireless wi..."

  • ...It has been recently shown that the employment of an excess of antennas at the BS (very large MIMO) offers unprecedented array and multiplexing gains both in the uplink and in the downlink [3], [4]....

    [...]

  • ...Previous results for very large MIMO systems have only considered frequency flat channels [3], [4], [5]....

    [...]

Journal ArticleDOI
TL;DR: A comprehensive survey of the interplay between NOMA and many existing wireless technologies and emerging ones including multiple-input multiple-output (MIMO), massive MIMO, millimeter wave communications, cognitive and cooperative communications, visible light communications, physical layer security, energy harvesting, wireless caching, and so on.
Abstract: Non-orthogonal multiple access (NOMA) has been widely recognized as a promising way to scale up the number of users, enhance the spectral efficiency, and improve the user-fairness in wireless networks, by allowing more than one user to share one wireless resource. NOMA can be flexibly combined with many existing wireless technologies and emerging ones including multiple-input multiple-output (MIMO), massive MIMO, millimeter wave communications, cognitive and cooperative communications, visible light communications, physical layer security, energy harvesting, wireless caching, and so on. Combination of NOMA with these technologies can further increase scalability, spectral efficiency, energy efficiency, and greenness of future communication networks. This paper provides a comprehensive survey of the interplay between NOMA and the above technologies. The emphasis is on how the above techniques can benefit from NOMA and vice versa. Moreover, challenges and future research directions are identified.

175 citations


Cites background from "Noncooperative Cellular Wireless wi..."

  • ...the spectral efficiency of wireless networks via aggressive spatial multiplexing [12]–[15]....

    [...]

  • ...in the same time-frequency resource element [12]....

    [...]

Journal ArticleDOI
TL;DR: A critical analysis of the state-of-the-art EE-maximization techniques for hybrid MM systems allows us to identify several open research problems which, if addressed, will immensely help operators in planning for energy- efficient 5G deployments.
Abstract: As we make progress toward the 5G of wireless networks, the bit-per-joule energy efficiency (EE) becomes an important design criterion for sustainable evolution. In this regard, one of the key enablers for 5G is massive multiple-input multiple-output (MIMO) technology, where the BSs are equipped with an excess of antennas to achieve multiple orders of spectral and energy efficiency gains over current LTE networks. Here, we review and present a comprehensive discussion on techniques that further boost the EE gains offered by massive MIMO (MM). We begin with an overview of MM technology and explain how realistic power consumption models should be developed for MM systems. We then review prominent EE-maximization techniques for MM systems and identify a few limitations in the state-of-the-art. Next, we investigate EE-maximization in "hybrid MM systems," where MM operates alongside two other promising 5G technologies: millimeter wave and heterogenous networks. Multiple opportunities open up for achieving larger EE gains than with conventional MM systems because massive MIMO benefits mutually from the co-existence with these 5G technologies. However, such a co-existence also introduces several new design constraints, making EE-maximization non-trivial. A critical analysis of the state-of-the-art EE-maximization techniques for hybrid MM systems allows us to identify several open research problems which, if addressed, will immensely help operators in planning for energy- efficient 5G deployments.

174 citations


Cites background from "Noncooperative Cellular Wireless wi..."

  • ...Deploying several antennas at the BS results in an interesting propagation scenario called favourable propagation, where the channel becomes near-deterministic because the BS-UE radio links become nearly orthogonal to each other [2]....

    [...]

  • ...Favorable propagation is derived in [2] as an asymptotic propagation scenario for independent and identically distributed (i....

    [...]

Journal ArticleDOI
TL;DR: This paper proposes an angle domain hybrid precoding and channel tracking method by exploring the spatial features of the mm-wave massive MIMO channel and results are provided to corroborate the studies.
Abstract: The millimeter-wave (mm-wave) massive multiple-input multiple-output (MIMO) system has gained much attention for its considerable improvement in system throughput. However, the cost of complex hardware, e.g., radio frequency (RF) chains, hinders it from practical deployment. In this paper, we propose an angle domain hybrid precoding and channel tracking method by exploring the spatial features of the mm-wave massive MIMO channel. The number of the effective spatial beams, or equivalently the RF chains, is enormously decreased via the operation of spatial rotation . The users are then scheduled by the angle division multiple access scheme, which groups users according to their direction of arrivals (DOAs). Meanwhile, a channel tracking method is designed for the subsequent data transmission through a small number of pilot symbols. Specifically, the channel information is divided into the DOA information and the gain information, where the DOA information is tracked by a modified unscented Kalman filter and the gain information is estimated from beam training. Numerical results are provided to corroborate our studies.

173 citations

References
More filters
Journal ArticleDOI
Gerard J. Foschini1
TL;DR: This paper addresses digital communication in a Rayleigh fading environment when the channel characteristic is unknown at the transmitter but is known (tracked) at the receiver with the aim of leveraging the already highly developed 1-D codec technology.
Abstract: This paper addresses digital communication in a Rayleigh fading environment when the channel characteristic is unknown at the transmitter but is known (tracked) at the receiver. Inventing a codec architecture that can realize a significant portion of the great capacity promised by information theory is essential to a standout long-term position in highly competitive arenas like fixed and indoor wireless. Use (n T , n R ) to express the number of antenna elements at the transmitter and receiver. An (n, n) analysis shows that despite the n received waves interfering randomly, capacity grows linearly with n and is enormous. With n = 8 at 1% outage and 21-dB average SNR at each receiving element, 42 b/s/Hz is achieved. The capacity is more than 40 times that of a (1, 1) system at the same total radiated transmitter power and bandwidth. Moreover, in some applications, n could be much larger than 8. In striving for significant fractions of such huge capacities, the question arises: Can one construct an (n, n) system whose capacity scales linearly with n, using as building blocks n separately coded one-dimensional (1-D) subsystems of equal capacity? With the aim of leveraging the already highly developed 1-D codec technology, this paper reports just such an invention. In this new architecture, signals are layered in space and time as suggested by a tight capacity bound.

6,812 citations


"Noncooperative Cellular Wireless wi..." refers background in this paper

  • ...A point-to-point MIMO system [2] requires expensive multiple-antenna terminals....

    [...]

Journal ArticleDOI
TL;DR: Under certain mild conditions, this scheme is found to be throughput-wise asymptotically optimal for both high and low signal-to-noise ratio (SNR), and some numerical results are provided for the ergodic throughput of the simplified zero-forcing scheme in independent Rayleigh fading.
Abstract: A Gaussian broadcast channel (GBC) with r single-antenna receivers and t antennas at the transmitter is considered. Both transmitter and receivers have perfect knowledge of the channel. Despite its apparent simplicity, this model is, in general, a nondegraded broadcast channel (BC), for which the capacity region is not fully known. For the two-user case, we find a special case of Marton's (1979) region that achieves optimal sum-rate (throughput). In brief, the transmitter decomposes the channel into two interference channels, where interference is caused by the other user signal. Users are successively encoded, such that encoding of the second user is based on the noncausal knowledge of the interference caused by the first user. The crosstalk parameters are optimized such that the overall throughput is maximum and, surprisingly, this is shown to be optimal over all possible strategies (not only with respect to Marton's achievable region). For the case of r>2 users, we find a somewhat simpler choice of Marton's region based on ordering and successively encoding the users. For each user i in the given ordering, the interference caused by users j>i is eliminated by zero forcing at the transmitter, while interference caused by users j

2,616 citations


"Noncooperative Cellular Wireless wi..." refers background in this paper

  • ...An alternative to a point-to-point MIMO system is a multiuser MIMO system [3], [4], [5], [6] in which an antenna array simultaneously serves a multiplicity of autonomous terminals....

    [...]

Book
28 Jun 2004
TL;DR: A tutorial on random matrices is provided which provides an overview of the theory and brings together in one source the most significant results recently obtained.
Abstract: Random matrix theory has found many applications in physics, statistics and engineering since its inception. Although early developments were motivated by practical experimental problems, random matrices are now used in fields as diverse as Riemann hypothesis, stochastic differential equations, condensed matter physics, statistical physics, chaotic systems, numerical linear algebra, neural networks, multivariate statistics, information theory, signal processing and small-world networks. This article provides a tutorial on random matrices which provides an overview of the theory and brings together in one source the most significant results recently obtained. Furthermore, the application of random matrix theory to the fundamental limits of wireless communication channels is described in depth.

2,308 citations


"Noncooperative Cellular Wireless wi..." refers background in this paper

  • ...It can be shown that the vector φkjΦ ∗ l has exactly the same probability distribution as does any row vector of Φl [15], [16]....

    [...]

Journal ArticleDOI
TL;DR: It is shown that the dirty paper achievable region achieves the sum-rate capacity of the MIMO BC by establishing that the maximum sum rate of this region equals an upper bound on the sum rate.
Abstract: We consider a multiuser multiple-input multiple- output (MIMO) Gaussian broadcast channel (BC), where the transmitter and receivers have multiple antennas. Since the MIMO BC is in general a nondegraded BC, its capacity region remains an unsolved problem. We establish a duality between what is termed the "dirty paper" achievable region (the Caire-Shamai (see Proc. IEEE Int. Symp. Information Theory, Washington, DC, June 2001, p.322) achievable region) for the MIMO BC and the capacity region of the MIMO multiple-access channel (MAC), which is easy to compute. Using this duality, we greatly reduce the computational complexity required for obtaining the dirty paper achievable region for the MIMO BC. We also show that the dirty paper achievable region achieves the sum-rate capacity of the MIMO BC by establishing that the maximum sum rate of this region equals an upper bound on the sum rate of the MIMO BC.

1,802 citations


"Noncooperative Cellular Wireless wi..." refers background in this paper

  • ...An alternative to a point-to-point MIMO system is a multiuser MIMO system [3], [4], [5], [6] in which an antenna array simultaneously serves a multiplicity of autonomous terminals....

    [...]