scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Noncooperative Cellular Wireless with Unlimited Numbers of Base Station Antennas

Thomas L. Marzetta1
01 Nov 2010-IEEE Transactions on Wireless Communications (IEEE)-Vol. 9, Iss: 11, pp 3590-3600
TL;DR: A cellular base station serves a multiplicity of single-antenna terminals over the same time-frequency interval and a complete multi-cellular analysis yields a number of mathematically exact conclusions and points to a desirable direction towards which cellular wireless could evolve.
Abstract: A cellular base station serves a multiplicity of single-antenna terminals over the same time-frequency interval. Time-division duplex operation combined with reverse-link pilots enables the base station to estimate the reciprocal forward- and reverse-link channels. The conjugate-transpose of the channel estimates are used as a linear precoder and combiner respectively on the forward and reverse links. Propagation, unknown to both terminals and base station, comprises fast fading, log-normal shadow fading, and geometric attenuation. In the limit of an infinite number of antennas a complete multi-cellular analysis, which accounts for inter-cellular interference and the overhead and errors associated with channel-state information, yields a number of mathematically exact conclusions and points to a desirable direction towards which cellular wireless could evolve. In particular the effects of uncorrelated noise and fast fading vanish, throughput and the number of terminals are independent of the size of the cells, spectral efficiency is independent of bandwidth, and the required transmitted energy per bit vanishes. The only remaining impairment is inter-cellular interference caused by re-use of the pilot sequences in other cells (pilot contamination) which does not vanish with unlimited number of antennas.
Citations
More filters
Journal ArticleDOI
TL;DR: The performance of opportunistic random beamforming (RBF) and the multiuser (MU) gain in millimeter-wave MU multiple-input single-output (MISO) downlink systems are analyzed based on the uniform random single-path (UR-SP) channel model suitable for highly directional mm-wave radio propagation channels.
Abstract: In this paper, the performance of opportunistic random beamforming (RBF) and the multiuser (MU) gain in millimeter-wave (mm-wave) MU multiple-input single-output (MISO) downlink systems are analyzed based on the uniform random single-path (UR-SP) channel model suitable for highly directional mm-wave radio propagation channels. It is shown that under the UR-SP channel model, RBF achieves linear sum rate scaling with respect to (w.r.t.) the number of transmit antennas and, furthermore, yields optimal sum rate performance when the number of transmit antennas is large, if the number of users increases linearly w.r.t. the number of transmit antennas. Several beam training and user selection methods are investigated to yield insights into the most effective beamforming and scheduling choice for mm-wave MU-MISO in various operating conditions. Simulation results validate our analysis based on asymptotic techniques for finite cases.

124 citations

Journal ArticleDOI
TL;DR: A broad understanding of the fundamental properties of the PA is introduced to help motivate holistic design approaches to mitigate the non-ideal effects in real-life PA devices, and accelerate cross-domain research to further enhance the available techniques.
Abstract: In this paper, we provide a survey on techniques to improve the spectrum and energy efficiency of wireless communication systems. Recognizing the fact that power amplifier (PA) is one of the most critical components in wireless communication systems and consumes a significant fraction of the total energy, we take a bottom-up approach to focus on PA-centric designs. In the first part of the survey, we introduce the fundamental properties of the PA, such as linearity and efficiency . Next, we quantify the detrimental effects of the signal non-linearity and power inefficiency of the PA on the spectrum efficiency (SE) and energy efficiency (EE) of wireless communications. In the last part, we survey known mitigation techniques from three perspectives: PA design , signal design and network design . We believe that this broad understanding will help motivate holistic design approaches to mitigate the non-ideal effects in real-life PA devices, and accelerate cross-domain research to further enhance the available techniques.

124 citations

Journal ArticleDOI
TL;DR: An antenna grouping based feedback reduction technique for FDD-based massive MIMO systems, dubbed antenna group beamforming (AGB), maps multiple correlated antenna elements to a single representative value using predesigned patterns.
Abstract: Recent works on massive multiple-input multiple-output (MIMO) have shown that a potential breakthrough in capacity gains can be achieved by deploying a very large number of antennas at the base station. In order to achieve the performance that massive MIMO systems promise, accurate transmit-side channel state information (CSI) should be available at the base station. While transmit-side CSI can be obtained by employing channel reciprocity in time division duplexing (TDD) systems, explicit feedback of CSI from the user terminal to the base station is needed for frequency division duplexing (FDD) systems. In this paper, we propose an antenna grouping based feedback reduction technique for FDD-based massive MIMO systems. The proposed algorithm, dubbed antenna group beamforming (AGB), maps multiple correlated antenna elements to a single representative value using predesigned patterns. The proposed method modifies the feedback packet by introducing the concept of a header to select a suitable group pattern and a payload to quantize the reduced dimension channel vector. Simulation results show that the proposed method achieves significant feedback overhead reduction over conventional approach performing the vector quantization of whole channel vector under the same target sum rate requirement.

123 citations


Cites background from "Noncooperative Cellular Wireless wi..."

  • ...MULTIPLE-INPUT multiple-output (MIMO) systems with large-scale transmit antenna arrays, often called massive MIMO, have been of great interest in recent years because of their potential to dramatically improve spectral efficiency of future wireless systems [3], [4]....

    [...]

Journal ArticleDOI
TL;DR: It is shown that the total power consumption at the sensors decays as 1/N, replicating the power savings obtained in massive MIMO mobile communications literature.
Abstract: We consider a decentralized multi-sensor estimation problem where $L$ sensor nodes observe noisy versions of a correlated random source vector. The sensors amplify and forward their observations over a fading coherent multiple access channel (MAC) to a fusion center (FC). The FC is equipped with a large array of $N$ antennas and adopts a minimum mean-square error (MMSE) approach for estimating the source. We optimize the amplification factor (or equivalently transmission power) at each sensor node in two different scenarios: a) with the objective of total power minimization subject to mean square error (MSE) of source estimation constraint, and b) with the objective of minimizing MSE subject to total power constraint. For this purpose, based on the well-known favorable propagation condition (when $L \ll N$ ) achieved in massive multiple-input multiple-output (MIMO), we apply an asymptotic approximation on the MSE and use convex optimization techniques to solve for the optimal sensor power allocation in a) and b). In a), we show that the total power consumption at the sensors decays as $1/N$ , replicating the power savings obtained in massive MIMO mobile communications literature. We also show several extensions of the aforementioned scenarios to the cases where sensor-to-FC fading channels are correlated, and channel coefficients are subject to estimation error. Through numerical studies, we also illustrate the superiority of the proposed optimal power allocation methods over uniform power allocation.

122 citations


Cites background from "Noncooperative Cellular Wireless wi..."

  • ...I. INTRODUCTION T HIS section summarizes prior work in the field, and pro-vides paper contributions as well as outline and mathematical notations....

    [...]

Journal ArticleDOI
TL;DR: To the best of the knowledge, AirSync offers the first realization of the full distributed MU-MIMO multiplexing gain, namely the ability to increase the number of active wireless clients per time-frequency slot linearly with the numberof jointly coordinated APs, without reducing the per client rate.
Abstract: The enormous success of advanced wireless devices is pushing the demand for higher wireless data rates. Denser spectrum reuse through the deployment of more access points (APs) per square mile has the potential to successfully meet such demand. In principle, distributed multiuser multiple-input-multiple-output (MU-MIMO) provides the best approach to infrastructure density increase since several access points are connected to a central server and operate as a large distributed multiantenna access point. This ensures that all transmitted signal power serves the purpose of data transmission, rather than creating interference. In practice, however, a number of implementation difficulties must be addressed, the most significant of which is aligning the phases of all jointly coordinated APs. In this paper, we propose AirSync, a novel scheme that provides timing and phase synchronization accurate enough to enable distributed MU-MIMO. AirSync detects the slot boundary such that all APs are time-synchronous within a cyclic prefix (CP) of the orthogonal frequency-division multiplexing (OFDM) modulation and predicts the instantaneous carrier phase correction along the transmit slot such that all transmitters maintain their coherence, which is necessary for multiuser beamforming. We have implemented AirSync as a digital circuit in the field programmable gate array (FPGA) of the WARP radio platform. Our experimental testbed, comprising four APs and four clients, shows that AirSync is able to achieve timing synchronization within the OFDM CP and carrier phase coherence within a few degrees. For the purpose of demonstration, we have implemented two MU-MIMO precoding schemes, Zero-Forcing Beamforming (ZFBF) and Tomlinson-Harashima Precoding (THP). In both cases, our system approaches the theoretical optimal multiplexing gains. We also discuss aspects related to the MAC and multiuser scheduling design, in relation to the distributed MU-MIMO architecture. To the best of our knowledge, AirSync offers the first realization of the full distributed MU-MIMO multiplexing gain, namely the ability to increase the number of active wireless clients per time-frequency slot linearly with the number of jointly coordinated APs, without reducing the per client rate.

122 citations

References
More filters
Journal ArticleDOI
Gerard J. Foschini1
TL;DR: This paper addresses digital communication in a Rayleigh fading environment when the channel characteristic is unknown at the transmitter but is known (tracked) at the receiver with the aim of leveraging the already highly developed 1-D codec technology.
Abstract: This paper addresses digital communication in a Rayleigh fading environment when the channel characteristic is unknown at the transmitter but is known (tracked) at the receiver. Inventing a codec architecture that can realize a significant portion of the great capacity promised by information theory is essential to a standout long-term position in highly competitive arenas like fixed and indoor wireless. Use (n T , n R ) to express the number of antenna elements at the transmitter and receiver. An (n, n) analysis shows that despite the n received waves interfering randomly, capacity grows linearly with n and is enormous. With n = 8 at 1% outage and 21-dB average SNR at each receiving element, 42 b/s/Hz is achieved. The capacity is more than 40 times that of a (1, 1) system at the same total radiated transmitter power and bandwidth. Moreover, in some applications, n could be much larger than 8. In striving for significant fractions of such huge capacities, the question arises: Can one construct an (n, n) system whose capacity scales linearly with n, using as building blocks n separately coded one-dimensional (1-D) subsystems of equal capacity? With the aim of leveraging the already highly developed 1-D codec technology, this paper reports just such an invention. In this new architecture, signals are layered in space and time as suggested by a tight capacity bound.

6,812 citations


"Noncooperative Cellular Wireless wi..." refers background in this paper

  • ...A point-to-point MIMO system [2] requires expensive multiple-antenna terminals....

    [...]

Journal ArticleDOI
TL;DR: Under certain mild conditions, this scheme is found to be throughput-wise asymptotically optimal for both high and low signal-to-noise ratio (SNR), and some numerical results are provided for the ergodic throughput of the simplified zero-forcing scheme in independent Rayleigh fading.
Abstract: A Gaussian broadcast channel (GBC) with r single-antenna receivers and t antennas at the transmitter is considered. Both transmitter and receivers have perfect knowledge of the channel. Despite its apparent simplicity, this model is, in general, a nondegraded broadcast channel (BC), for which the capacity region is not fully known. For the two-user case, we find a special case of Marton's (1979) region that achieves optimal sum-rate (throughput). In brief, the transmitter decomposes the channel into two interference channels, where interference is caused by the other user signal. Users are successively encoded, such that encoding of the second user is based on the noncausal knowledge of the interference caused by the first user. The crosstalk parameters are optimized such that the overall throughput is maximum and, surprisingly, this is shown to be optimal over all possible strategies (not only with respect to Marton's achievable region). For the case of r>2 users, we find a somewhat simpler choice of Marton's region based on ordering and successively encoding the users. For each user i in the given ordering, the interference caused by users j>i is eliminated by zero forcing at the transmitter, while interference caused by users j

2,616 citations


"Noncooperative Cellular Wireless wi..." refers background in this paper

  • ...An alternative to a point-to-point MIMO system is a multiuser MIMO system [3], [4], [5], [6] in which an antenna array simultaneously serves a multiplicity of autonomous terminals....

    [...]

Book
28 Jun 2004
TL;DR: A tutorial on random matrices is provided which provides an overview of the theory and brings together in one source the most significant results recently obtained.
Abstract: Random matrix theory has found many applications in physics, statistics and engineering since its inception. Although early developments were motivated by practical experimental problems, random matrices are now used in fields as diverse as Riemann hypothesis, stochastic differential equations, condensed matter physics, statistical physics, chaotic systems, numerical linear algebra, neural networks, multivariate statistics, information theory, signal processing and small-world networks. This article provides a tutorial on random matrices which provides an overview of the theory and brings together in one source the most significant results recently obtained. Furthermore, the application of random matrix theory to the fundamental limits of wireless communication channels is described in depth.

2,308 citations


"Noncooperative Cellular Wireless wi..." refers background in this paper

  • ...It can be shown that the vector φkjΦ ∗ l has exactly the same probability distribution as does any row vector of Φl [15], [16]....

    [...]

Journal ArticleDOI
TL;DR: It is shown that the dirty paper achievable region achieves the sum-rate capacity of the MIMO BC by establishing that the maximum sum rate of this region equals an upper bound on the sum rate.
Abstract: We consider a multiuser multiple-input multiple- output (MIMO) Gaussian broadcast channel (BC), where the transmitter and receivers have multiple antennas. Since the MIMO BC is in general a nondegraded BC, its capacity region remains an unsolved problem. We establish a duality between what is termed the "dirty paper" achievable region (the Caire-Shamai (see Proc. IEEE Int. Symp. Information Theory, Washington, DC, June 2001, p.322) achievable region) for the MIMO BC and the capacity region of the MIMO multiple-access channel (MAC), which is easy to compute. Using this duality, we greatly reduce the computational complexity required for obtaining the dirty paper achievable region for the MIMO BC. We also show that the dirty paper achievable region achieves the sum-rate capacity of the MIMO BC by establishing that the maximum sum rate of this region equals an upper bound on the sum rate of the MIMO BC.

1,802 citations


"Noncooperative Cellular Wireless wi..." refers background in this paper

  • ...An alternative to a point-to-point MIMO system is a multiuser MIMO system [3], [4], [5], [6] in which an antenna array simultaneously serves a multiplicity of autonomous terminals....

    [...]