scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Nonlinear electron dynamics in metal clusters

TL;DR: In this paper, the authors review the present status of TDLDA calculations for metal clusters, considering formal aspects of the theory, recipes for its numerical implementation as well as a variety of applications.
About: This article is published in Physics Reports.The article was published on 2000-10-01. It has received 407 citations till now. The article focuses on the topics: Local-density approximation.
Citations
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors review the present status of self-consistent mean field (SCMF) models for describing nuclear structure and low-energy dynamics and present several extensions beyond the mean-field model which are currently used.
Abstract: The authors review the present status of self-consistent mean-field (SCMF) models for describing nuclear structure and low-energy dynamics. These models are presented as effective energy-density functionals. The three most widely used variants of SCMF's based on a Skyrme energy functional, a Gogny force, and a relativistic mean-field Lagrangian are considered side by side. The crucial role of the treatment of pairing correlations is pointed out in each case. The authors discuss other related nuclear structure models and present several extensions beyond the mean-field model which are currently used. Phenomenological adjustment of the model parameters is discussed in detail. The performance quality of the SCMF model is demonstrated for a broad range of typical applications.

1,822 citations

Journal ArticleDOI
TL;DR: In this article, the authors provide a perspective on the use of orbital-dependent functionals, which is currently considered one of the most promising avenues in modern density-functional theory.
Abstract: This review provides a perspective on the use of orbital-dependent functionals, which is currently considered one of the most promising avenues in modern density-functional theory. The focus here is on four major themes: the motivation for orbital-dependent functionals in terms of limitations of semilocal functionals; the optimized effective potential as a rigorous approach to incorporating orbital-dependent functionals within the Kohn-Sham framework; the rationale behind and advantages and limitations of four popular classes of orbital-dependent functionals; and the use of orbital-dependent functionals for predicting excited-state properties. For each of these issues, both formal and practical aspects are assessed.

1,014 citations

Journal ArticleDOI
TL;DR: In this article, the one-dimensional two-species quantum hydrodynamic model is considered in the limit of small mass ratio of the charge carriers, and the system is shown to support linear waves, which are described by a deformed Korteweg-de Vries equation.
Abstract: The one-dimensional two-species quantum hydrodynamic model is considered in the limit of small mass ratio of the charge carriers. Closure is obtained by adopting an equation of state pertaining to a zero-temperature Fermi gas for the electrons and by disregarding pressure effects for the ions. By an appropriate rescaling of the variables, a nondimensional parameter H, proportional to quantum diffraction effects, is identified. The system is then shown to support linear waves, which in the limit of small H resemble the classical ion-acoustic waves. In the weakly nonlinear limit, the quantum plasma is shown to support waves described by a deformed Korteweg–de Vries equation which depends in a nontrivial way on the quantum parameter H. In the fully nonlinear regime, the system also admits traveling waves which can exhibit periodic patterns. The quasineutral limit of the system is also discussed.

560 citations

Journal ArticleDOI
TL;DR: In this article, the fully nonlinear governing equations for spin-1/2 quantum plasmas are presented, starting from the Pauli equation, the relevant plasma equations are derived, and it is shown that nontrivial quantum spin couplings arise, enabling studies of the combined collective and spin dynamics.
Abstract: The fully nonlinear governing equations for spin-1/2 quantum plasmas are presented. Starting from the Pauli equation, the relevant plasma equations are derived, and it is shown that nontrivial quantum spin couplings arise, enabling studies of the combined collective and spin dynamics. The linear response of the quantum plasma in an electron-ion system is obtained and analyzed. Applications of the theory to solid state and astrophysical systems as well as dusty plasmas are pointed out.

429 citations

Journal ArticleDOI
TL;DR: In this paper, the authors provide an overview of key phenomena arising from laser-cluster interactions with focus on nonlinear optical excitations and discuss the underlying processes according to the current understanding.
Abstract: Laser excitation of nanometer-sized atomic and molecular clusters offers various opportunities to explore and control ultrafast many-particle dynamics. Whereas weak laser fields allow the analysis of photoionization, excited-state relaxation, and structural modifications on these finite quantum systems, large-amplitude collective electron motion and Coulomb explosion can be induced with intense laser pulses. This review provides an overview of key phenomena arising from laser-cluster interactions with focus on nonlinear optical excitations and discusses the underlying processes according to the current understanding. A general survey covers basic cluster properties and excitation mechanisms relevant for laser-driven cluster dynamics. Then, after an excursion in theoretical and experimental methods, results for single-photon and multiphoton excitations are reviewed with emphasis on signatures from time- and angular-resolved photoemission. A key issue of this review is the broad spectrum of phenomena arising from clusters exposed to strong fields, where the interaction with the laser pulse creates short-lived and dense nanoplasmas. The implications for technical developments such as the controlled generation of ion, electron, and radiation pulses will be addressed along with corresponding examples. Finally, future prospects of laser-cluster research as well as experimental and theoretical challenges are discussed.

391 citations


Cites background or methods from "Nonlinear electron dynamics in meta..."

  • ...In the semiclassical formulation, binary collisions can be incorporated by a Markovian collision integral of the UehlingUhlenbeck (UU) type (Uehling and Uhlenbeck, 1933), see (Bertsch and Das Gupta, 1988; Calvayrac et al., 2000; Köhn et al., 2008)....

    [...]

  • ...In the latter, absorbing boundary conditions can easily be implemented to avoid unphysical backscattering for the analysis of photoelectron spectra and angular distributions, see, e.g., (Calvayrac et al., 2000; Pohl et al., 2004b)....

    [...]

  • ...An efficient alternative is the time-splitting method which proceeds by interlaced kinetic and potential evolution (Calvayrac et al., 2000; Feit et al., 1982)....

    [...]

References
More filters
Journal ArticleDOI
TL;DR: A simple derivation of a simple GGA is presented, in which all parameters (other than those in LSD) are fundamental constants, and only general features of the detailed construction underlying the Perdew-Wang 1991 (PW91) GGA are invoked.
Abstract: Generalized gradient approximations (GGA’s) for the exchange-correlation energy improve upon the local spin density (LSD) description of atoms, molecules, and solids. We present a simple derivation of a simple GGA, in which all parameters (other than those in LSD) are fundamental constants. Only general features of the detailed construction underlying the Perdew-Wang 1991 (PW91) GGA are invoked. Improvements over PW91 include an accurate description of the linear response of the uniform electron gas, correct behavior under uniform scaling, and a smoother potential. [S0031-9007(96)01479-2] PACS numbers: 71.15.Mb, 71.45.Gm Kohn-Sham density functional theory [1,2] is widely used for self-consistent-field electronic structure calculations of the ground-state properties of atoms, molecules, and solids. In this theory, only the exchange-correlation energy EXC › EX 1 EC as a functional of the electron spin densities n"srd and n#srd must be approximated. The most popular functionals have a form appropriate for slowly varying densities: the local spin density (LSD) approximation Z d 3 rn e unif

146,533 citations

Journal ArticleDOI
TL;DR: In this paper, the Hartree and Hartree-Fock equations are applied to a uniform electron gas, where the exchange and correlation portions of the chemical potential of the gas are used as additional effective potentials.
Abstract: From a theory of Hohenberg and Kohn, approximation methods for treating an inhomogeneous system of interacting electrons are developed. These methods are exact for systems of slowly varying or high density. For the ground state, they lead to self-consistent equations analogous to the Hartree and Hartree-Fock equations, respectively. In these equations the exchange and correlation portions of the chemical potential of a uniform electron gas appear as additional effective potentials. (The exchange portion of our effective potential differs from that due to Slater by a factor of $\frac{2}{3}$.) Electronic systems at finite temperatures and in magnetic fields are also treated by similar methods. An appendix deals with a further correction for systems with short-wavelength density oscillations.

47,477 citations

Journal ArticleDOI
Axel D. Becke1
TL;DR: This work reports a gradient-corrected exchange-energy functional, containing only one parameter, that fits the exact Hartree-Fock exchange energies of a wide variety of atomic systems with remarkable accuracy, surpassing the performance of previous functionals containing two parameters or more.
Abstract: Current gradient-corrected density-functional approximations for the exchange energies of atomic and molecular systems fail to reproduce the correct 1/r asymptotic behavior of the exchange-energy density. Here we report a gradient-corrected exchange-energy functional with the proper asymptotic limit. Our functional, containing only one parameter, fits the exact Hartree-Fock exchange energies of a wide variety of atomic systems with remarkable accuracy, surpassing the performance of previous functionals containing two parameters or more.

45,683 citations

Journal ArticleDOI
TL;DR: In this article, the ground state of an interacting electron gas in an external potential was investigated and it was proved that there exists a universal functional of the density, called F[n(mathrm{r})], independent of the potential of the electron gas.
Abstract: This paper deals with the ground state of an interacting electron gas in an external potential $v(\mathrm{r})$. It is proved that there exists a universal functional of the density, $F[n(\mathrm{r})]$, independent of $v(\mathrm{r})$, such that the expression $E\ensuremath{\equiv}\ensuremath{\int}v(\mathrm{r})n(\mathrm{r})d\mathrm{r}+F[n(\mathrm{r})]$ has as its minimum value the correct ground-state energy associated with $v(\mathrm{r})$. The functional $F[n(\mathrm{r})]$ is then discussed for two situations: (1) $n(\mathrm{r})={n}_{0}+\stackrel{\ifmmode \tilde{}\else \~{}\fi{}}{n}(\mathrm{r})$, $\frac{\stackrel{\ifmmode \tilde{}\else \~{}\fi{}}{n}}{{n}_{0}}\ensuremath{\ll}1$, and (2) $n(\mathrm{r})=\ensuremath{\phi}(\frac{\mathrm{r}}{{r}_{0}})$ with $\ensuremath{\phi}$ arbitrary and ${r}_{0}\ensuremath{\rightarrow}\ensuremath{\infty}$. In both cases $F$ can be expressed entirely in terms of the correlation energy and linear and higher order electronic polarizabilities of a uniform electron gas. This approach also sheds some light on generalized Thomas-Fermi methods and their limitations. Some new extensions of these methods are presented.

38,160 citations

17 Jun 1964

28,969 citations