scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Nonlinear magic: multiphoton microscopy in the biosciences

01 Nov 2003-Nature Biotechnology (Nature Publishing Group)-Vol. 21, Iss: 11, pp 1369-1377
TL;DR: Multiphoton microscopy has found a niche in the world of biological imaging as the best noninvasive means of fluorescence microscopy in tissue explants and living animals and its use is now increasing exponentially.
Abstract: Multiphoton microscopy (MPM) has found a niche in the world of biological imaging as the best noninvasive means of fluorescence microscopy in tissue explants and living animals. Coupled with transgenic mouse models of disease and 'smart' genetically encoded fluorescent indicators, its use is now increasing exponentially. Properly applied, it is capable of measuring calcium transients 500 microm deep in a mouse brain, or quantifying blood flow by imaging shadows of blood cells as they race through capillaries. With the multitude of possibilities afforded by variations of nonlinear optics and localized photochemistry, it is possible to image collagen fibrils directly within tissue through nonlinear scattering, or release caged compounds in sub-femtoliter volumes.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: A high-resolution fluorescence microscopy method based on high-accuracy localization of photoswitchable fluorophores that can, in principle, reach molecular-scale resolution is developed.
Abstract: We have developed a high-resolution fluorescence microscopy method based on high-accuracy localization of photoswitchable fluorophores. In each imaging cycle, only a fraction of the fluorophores were turned on, allowing their positions to be determined with nanometer accuracy. The fluorophore positions obtained from a series of imaging cycles were used to reconstruct the overall image. We demonstrated an imaging resolution of 20 nm. This technique can, in principle, reach molecular-scale resolution.

7,213 citations

Journal ArticleDOI
TL;DR: Fundamental concepts of nonlinear microscopy are reviewed and conditions relevant for achieving large imaging depths in intact tissue are discussed.
Abstract: With few exceptions biological tissues strongly scatter light, making high-resolution deep imaging impossible for traditional⎯including confocal⎯fluorescence microscopy. Nonlinear optical microscopy, in particular two photon–excited fluorescence microscopy, has overcome this limitation, providing large depth penetration mainly because even multiply scattered signal photons can be assigned to their origin as the result of localized nonlinear signal generation. Two-photon microscopy thus allows cellular imaging several hundred microns deep in various organs of living animals. Here we review fundamental concepts of nonlinear microscopy and discuss conditions relevant for achieving large imaging depths in intact tissue.

3,781 citations

Journal ArticleDOI
14 Apr 2006-Science
TL;DR: The focus is on protein detection in live versus fixed cells: determination of protein expression, localization, activity state, and the possibility for combination of fluorescent light microscopy with electron microscopy.
Abstract: Advances in molecular biology, organic chemistry, and materials science have recently created several new classes of fluorescent probes for imaging in cell biology. Here we review the characteristic benefits and limitations of fluorescent probes to study proteins. The focus is on protein detection in live versus fixed cells: determination of protein expression, localization, activity state, and the possibility for combination of fluorescent light microscopy with electron microscopy. Small organic fluorescent dyes, nanocrystals ("quantum dots"), autofluorescent proteins, small genetic encoded tags that can be complexed with fluorochromes, and combinations of these probes are highlighted.

2,632 citations

Journal ArticleDOI
08 Feb 2008-Science
TL;DR: 3D stochastic optical reconstruction microscopy (STORM) is demonstrated by using optical astigmatism to determine both axial and lateral positions of individual fluorophores with nanometer accuracy, allowing the 3D morphology of nanoscopic cellular structures to be resolved.
Abstract: Recent advances in far-field fluorescence microscopy have led to substantial improvements in image resolution, achieving a near-molecular resolution of 20 to 30 nanometers in the two lateral dimensions. Three-dimensional (3D) nanoscale-resolution imaging, however, remains a challenge. We demonstrated 3D stochastic optical reconstruction microscopy (STORM) by using optical astigmatism to determine both axial and lateral positions of individual fluorophores with nanometer accuracy. Iterative, stochastic activation of photoswitchable probes enables high-precision 3D localization of each probe, and thus the construction of a 3D image, without scanning the sample. Using this approach, we achieved an image resolution of 20 to 30 nanometers in the lateral dimensions and 50 to 60 nanometers in the axial dimension. This development allowed us to resolve the 3D morphology of nanoscopic cellular structures.

2,589 citations

Journal ArticleDOI
TL;DR: It is believed that 3D cultures will have a strong impact on drug screening and will also decrease the use of laboratory animals, for example, in the context of toxicity assays.
Abstract: Cell monolayers have serious limitations for cell biological investigations and for cell-based assays in drug screening and toxicity studies. However, the establishment of three-dimensional cultures as a mainstream approach requires the development of reliable protocols, new cell lines and suitable imaging techniques.

2,413 citations


Cites methods from "Nonlinear magic: multiphoton micros..."

  • ...Multiphoton microscopy is often regarded as the technique of choice for imaging 3D sample...

    [...]

References
More filters
Journal ArticleDOI
06 Apr 1990-Science
TL;DR: The fluorescence emission increased quadratically with the excitation intensity so that fluorescence and photo-bleaching were confined to the vicinity of the focal plane as expected for cooperative two-photon excitation.
Abstract: Molecular excitation by the simultaneous absorption of two photons provides intrinsic three-dimensional resolution in laser scanning fluorescence microscopy. The excitation of fluorophores having single-photon absorption in the ultraviolet with a stream of strongly focused subpicosecond pulses of red laser light has made possible fluorescence images of living cells and other microscopic objects. The fluorescence emission increased quadratically with the excitation intensity so that fluorescence and photo-bleaching were confined to the vicinity of the focal plane as expected for cooperative two-photon excitation. This technique also provides unprecedented capabilities for three-dimensional, spatially resolved photochemistry, particularly photolytic release of caged effector molecules.

8,905 citations


"Nonlinear magic: multiphoton micros..." refers background in this paper

  • ...Since its first demonstration by our group over a decade ag...

    [...]

BookDOI
01 Jan 1990
TL;DR: Methods for Three-Dimensional Imaging and Tutorial on Practical Confocal Microscopy and Use of the Confocal Test Specimen.
Abstract: Foundations of Confocal Scanned Imaging in Light Microscopy -- Fundamental Limits in Confocal Microscopy -- Special Optical Elements -- Points, Pixels, and Gray Levels: Digitizing Image Data -- Laser Sources for Confocal Microscopy -- Non-Laser Light Sources for Three-Dimensional Microscopy -- Objective Lenses for Confocal Microscopy -- The Contrast Formation in Optical Microscopy -- The Intermediate Optical System of Laser-Scanning Confocal Microscopes -- Disk-Scanning Confocal Microscopy -- Measuring the Real Point Spread Function of High Numerical Aperture Microscope Objective Lenses -- Photon Detectors for Confocal Microscopy -- Structured Illumination Methods -- Visualization Systems for Multi-Dimensional Microscopy Images -- Automated Three-Dimensional Image Analysis Methods for Confocal Microscopy -- Fluorophores for Confocal Microscopy: Photophysics and Photochemistry -- Practical Considerations in the Selection and Application of Fluorescent Probes -- Guiding Principles of Specimen Preservation for Confocal Fluorescence Microscopy -- Confocal Microscopy of Living Cells -- Aberrations in Confocal and Multi-Photon Fluorescence Microscopy Induced by Refractive Index Mismatch -- Interaction of Light with Botanical Specimens -- Signal-to-Noise Ratio in Confocal Microscopes -- Comparison of Widefield/Deconvolution and Confocal Microscopy for Three-Dimensional Imaging -- Blind Deconvolution -- Image Enhancement by Deconvolution -- Fiber-Optics in Scanning Optical Microscopy -- Fluorescence Lifetime Imaging in Scanning Microscopy -- Multi-Photon Molecular Excitation in Laser-Scanning Microscopy -- Multifocal Multi-Photon Microscopy -- 4Pi Microscopy -- Nanoscale Resolution with Focused Light: Stimulated Emission Depletion and Other Reversible Saturable Optical Fluorescence Transitions Microscopy Concepts -- Mass Storage, Display, and Hard Copy -- Coherent Anti-Stokes Raman Scattering Microscopy -- Related Methods for Three-Dimensional Imaging -- Tutorial on Practical Confocal Microscopy and Use of the Confocal Test Specimen -- Practical Confocal Microscopy -- Selective Plane Illumination Microscopy -- Cell Damage During Multi-Photon Microscopy -- Photobleaching -- Nonlinear (Harmonic Generation) Optical Microscopy -- Imaging Brain Slices -- Fluorescent Ion Measurement -- Confocal and Multi-Photon Imaging of Living Embryos -- Imaging Plant Cells -- Practical Fluorescence Resonance Energy Transfer or Molecular Nanobioscopy of Living Cells -- Automated Confocal Imaging and High-Content Screening for Cytomics -- Automated Interpretation of Subcellular Location Patterns from Three-Dimensional Confocal Microscopy -- Display and Presentation Software -- When Light Microscope Resolution Is Not Enough:Correlational Light Microscopy and Electron Microscopy -- Databases for Two- and Three-Dimensional Microscopical Images in Biology -- Confocal Microscopy of Biofilms — Spatiotemporal Approaches -- Bibliography of Confocal Microscopy.

4,121 citations

Journal ArticleDOI
TL;DR: In this article, an investigation of the structure of the electromagnetic field near the focus of an aplanatic system which images a point source is made, and the results are illustrated by diagrams and in a tabulated form based on data obtained by extensive calculations on an electronic computor.
Abstract: An investigation is made of the structure of the electromagnetic field near the focus of an aplanatic system which images a point source. First the case of a linearly polarized incident field is examined and expressions are derived for the electric and magnetic vectors in the image space. Some general consequences of the formulae are then discussed. In particular the symmetry properties of the field with respect to the focal plane are noted and the state of polarization of the image region is investigated. The distribution of the time-averaged electric and magnetic energy densities and of the energy flow (Poynting vector) in the focal plane is studied in detail, and the results are illustrated by diagrams and in a tabulated form based on data obtained by extensive calculations on an electronic computor. The case of an unpolarized field is also investigated. The solution is riot restricted to systems of low aperture, and the computational results cover, in fact, selected values of the angular semi-aperture a on the image side, in the whole range 0 ≤ α ≤ 90°. The limiting case α → 0 is examined in detail and it is shown that the field is then completely characterized by a single, generally complex, scalar function, which turns out to be identical with that of the classical scalar theory of Airy, Lommel and Struve. The results have an immediate bearing on the resolving power of image forming systems; they also help our understanding of the significance of the scalar diffraction theory, which is customarily employed, without a proper justification, in the analysis of images in lowaperture systems.

2,636 citations

Journal ArticleDOI
30 May 2003-Science
TL;DR: This work characterized water-soluble cadmium selenide–zinc sulfide quantum dots for multiphoton imaging in live animals and found no evidence of blinking (fluorescence intermittency) in solution on nanosecond to millisecond time scales.
Abstract: The use of semiconductor nanocrystals (quantum dots) as fluorescent labels for multiphoton microscopy enables multicolor imaging in demanding biological environments such as living tissue. We characterized water-soluble cadmium selenide-zinc sulfide quantum dots for multiphoton imaging in live animals. These fluorescent probes have two-photon action cross sections as high as 47,000 Goeppert-Mayer units, by far the largest of any label used in multiphoton microscopy. We visualized quantum dots dynamically through the skin of living mice, in capillaries hundreds of micrometers deep. We found no evidence of blinking (fluorescence intermittency) in solution on nanosecond to millisecond time scales.

2,246 citations


"Nonlinear magic: multiphoton micros..." refers background in this paper

  • ...The other extreme, CdSe-ZnS quantum dots, have cross-sections approaching 50,000 G...

    [...]