scispace - formally typeset
Search or ask a question
Journal Article•DOI•

Nonlinear nonminimum phase output tracking via dynamic sliding manifolds

TL;DR: The dynamic sliding mode controller joins features of a conventional sliding mode Controller (insensitivity to matched nonlinearities and disturbances) and a conventional dynamic compensator (accommodation to unmatched disturbances) to address nonlinear nonminimum phase output tracking.
Abstract: The output tracking in nonlinear nonminimum phase systems with matched and unmatched disturbances and matched nonlinearities is considered. The asymptotic linear output tracking with the desired (given) eigenvalues' placement is provided in a dynamic sliding manifold. The design algorithm of the sliding mode controller with the dynamic sliding manifold is developed. Addressing nonlinear nonminimum phase output tracking, the dynamic sliding mode controller joins features of a conventional sliding mode controller (insensitivity to matched nonlinearities and disturbances) and a conventional dynamic compensator (accommodation to unmatched disturbances).
Citations
More filters
Journal Article•DOI•
TL;DR: In this paper, an F-16 nonlinear sixdegree-of-freedom model is considered for tracking causal reference output with a finite number of nonzero time derivatives (piecewise polynomial spline model) in the presence of unmatched disturbances of the same kind.
Abstract: The approximate causal nonminimum phase output tracking problem is considered for an F-16 nonlinear sixdegree-of-freedom modelandaddressed via sliding modecontrol.Asymptoticoutputtracking-errordynamicswith desired eigenvalue placement are provided in case of tracking causal reference output proe le with a e nite number of nonzero time derivatives (piecewise polynomial spline model ) in the presence of unmatched disturbances of the same kind. A complete constructive algorithm for tracking controller design is built for a class of uncertain nonlinear multi-input/multi-output systems with known linear unstable internal dynamics. An analysis is made of the issue that the given nonlinear aircraft model yields to the approach developed.

98 citations

Journal Article•DOI•
TL;DR: Computer simulations show that the proposed water level controller for U-tube steam generators improves the transient response of steam generator water level and demonstrates its superiority to existing controllers.

24 citations

Journal Article•DOI•
G.R. Ansarifar1•
TL;DR: An adaptive dynamic sliding mode control method is applied for the level control problem of U-tube steam generators based on the presented nonlinear model and results confirm the improvement in transient response obtained by using the proposed controller.

23 citations

Journal Article•DOI•
TL;DR: An adaptive estimator-based dynamic sliding mode control method is developed for the level control problem of steam generators and exhibits the desired dynamic properties during the entire output tracking process independent of perturbations.

22 citations

References
More filters
Book•
01 Jan 1985
TL;DR: In this paper, a systematic feedback design theory for solving the problems of asymptotic tracking and disturbance rejection for linear distributed parameter systems is presented, which is intended to support the development of flight controllers for increasing the high angle of attack or high agility capabilities of existing and future generations of aircraft.
Abstract: : The principal goal of this three years research effort was to enhance the research base which would support efforts to systematically control, or take advantage of, dominant nonlinear or distributed parameter effects in the evolution of complex dynamical systems. Such an enhancement is intended to support the development of flight controllers for increasing the high angle of attack or high agility capabilities of existing and future generations of aircraft and missiles. The principal investigating team has succeeded in the development of a systematic methodology for designing feedback control laws solving the problems of asymptotic tracking and disturbance rejection for nonlinear systems with unknown, or uncertain, real parameters. Another successful research project was the development of a systematic feedback design theory for solving the problems of asymptotic tracking and disturbance rejection for linear distributed parameter systems. The technical details which needed to be overcome are discussed more fully in this final report.

8,525 citations

Book•
01 Feb 1992
TL;DR: The theory and practical application of Lyapunov's Theorem, a method for the Study of Non-linear High-Gain Systems, are studied.
Abstract: I. Mathematical Tools.- 1 Scope of the Theory of Sliding Modes.- 1 Shaping the Problem.- 2 Formalization of Sliding Mode Description.- 3 Sliding Modes in Control Systems.- 2 Mathematical Description of Motions on Discontinuity Boundaries.- 1 Regularization Problem.- 2 Equivalent Control Method.- 3 Regularization of Systems Linear with Respect to Control.- 4 Physical Meaning of the Equivalent Control.- 5 Stochastic Regularization.- 3 The Uniqueness Problems.- 1 Examples of Discontinuous Systems with Ambiguous Sliding Equations.- 1.1 Systems with Scalar Control.- 1.2 Systems Nonlinear with Respect to Vector-Valued Control.- 1.3 Example of Ambiguity in a System Linear with Respect to Control ..- 2 Minimal Convex Sets.- 3 Ambiguity in Systems Linear with Respect to Control.- 4 Stability of Sliding Modes.- 1 Problem Statement, Definitions, Necessary Conditions for Stability ..- 2 An Analog of Lyapunov's Theorem to Determine the Sliding Mode Domain.- 3 Piecewise Smooth Lyapunov Functions.- 4 Quadratic Forms Method.- 5 Systems with a Vector-Valued Control Hierarchy.- 6 The Finiteness of Lyapunov Functions in Discontinuous Dynamic Systems.- 5 Singularly Perturbed Discontinuous Systems.- 1 Separation of Motions in Singularly Perturbed Systems.- 2 Problem Statement for Systems with Discontinuous control.- 3 Sliding Modes in Singularly Perturbed Discontinuous Control Systems.- II. Design.- 6 Decoupling in Systems with Discontinuous Controls.- 1 Problem Statement.- 2 Invariant Transformations.- 3 Design Procedure.- 4 Reduction of the Control System Equations to a Regular Form.- 4.1 Single-Input Systems.- 4.2 Multiple-Input Systems.- 7 Eigenvalue Allocation.- 1 Controllability of Stationary Linear Systems.- 2 Canonical Controllability Form.- 3 Eigenvalue Allocation in Linear Systems. Stabilizability.- 4 Design of Discontinuity Surfaces.- 5 Stability of Sliding Modes.- 6 Estimation of Convergence to Sliding Manifold.- 8 Systems with Scalar Control.- 1 Design of Locally Stable Sliding Modes.- 2 Conditions of Sliding Mode Stability "in the Large".- 3 Design Procedure: An Example.- 4 Systems in the Canonical Form.- 9 Dynamic Optimization.- 1 Problem Statement.- 2 Observability, Detectability.- 3 Optimal Control in Linear Systems with Quadratic Criterion.- 4 Optimal Sliding Modes.- 5 Parametric Optimization.- 6 Optimization in Time-Varying Systems.- 10 Control of Linear Plants in the Presence of Disturbances.- 1 Problem Statement.- 2 Sliding Mode Invariance Conditions.- 3 Combined Systems.- 4 Invariant Systems Without Disturbance Measurements.- 5 Eigenvalue Allocation in Invariant System with Non-measurable Disturbances.- 11 Systems with High Gains and Discontinuous Controls.- 1 Decoupled Motion Systems.- 2 Linear Time-Invariant Systems.- 3 Equivalent Control Method for the Study of Non-linear High-Gain Systems.- 4 Concluding Remarks.- 12 Control of Distributed-Parameter Plants.- 1 Systems with Mobile Control.- 2 Design Based on the Lyapunov Method.- 3 Modal Control.- 4 Design of Distributed Control of Multi-Variable Heat Processes.- 13 Control Under Uncertainty Conditions.- 1 Design of Adaptive Systems with Reference Model.- 2 Identification with Piecewise-Continuous Dynamic Models.- 3 Method of Self-Optimization.- 14 State Observation and Filtering.- 1 The Luenberger Observer.- 2 Observer with Discontinuous Parameters.- 3 Sliding Modes in Systems with Asymptotic Observers.- 4 Quasi-Optimal Adaptive Filtering.- 15 Sliding Modes in Problems of Mathematical Programming.- 1 Problem Statement.- 2 Motion Equations and Necessary Existence Conditions for Sliding Mode.- 3 Gradient Procedures for Piecewise Smooth Function.- 4 Conditions for Penalty Function Existence. Convergence of Gradient Procedure.- 5 Design of Piecewise Smooth Penalty Function.- 6 Linearly Independent Constraints.- III. Applications.- 16 Manipulator Control System.- 1 Model of Robot Arm.- 2 Problem Statement.- 3 Design of Control.- 4 Design of Control System for a Two-joint Manipulator.- 5 Manipulator Simulation.- 6 Path Control.- 7 Conclusions.- 17 Sliding Modes in Control of Electric Motors.- 1 Problem Statement.- 2 Control of d. c. Motor.- 3 Control of Induction Motor.- 4 Control of Synchronous Motor.- 18 Examples.- 1 Electric Drives for Metal-cutting Machine Tools.- 2 Vehicle Control.- 3 Process Control.- 4 Other Applications.- References.

5,422 citations

Journal Article•DOI•
01 Mar 1988
TL;DR: In this paper, the design of variable-structure control (VSC) systems for a class of multivariable, nonlinear, time-varying systems is presented.
Abstract: The design of variable-structure control (VSC) systems for a class of multivariable, nonlinear, time-varying systems is presented. Using the Utkin-Drazenovic method of equivalent control and generalized Lyapunov stability concepts, the VSC design is described in a unified manner. Complications that arise due to multiple inputs are examined, and several approaches useful in overcoming them are developed. Recent developments are investigated, as is the kinship of VSC and the deterministic approach to the control of uncertain systems. All points are illustrated by numerical examples. The recent literature on VSC applications is surveyed. >

1,860 citations

Journal Article•DOI•
TL;DR: In this paper, a trade-off between tracking precision and robustness to modelling uncertainty is presented, where tracking accuracy is sot according to the extent, of parametric uncertainty and the frequency range of unmodelled dynamics.
Abstract: New results are presented on the sliding control methodology introduced by Slotine and Sastry (1983) to achieve accurate tracking for a class of non-linear time-varying multivariate systems in the presence of disturbances and parameter variations. An explicit trade-off is obtained between tracking precision and robustness to modelling uncertainty : tracking accuracy is sot according to the extent, of parametric uncertainty and the frequency range of unmodelled dynamics. The trade-off is further refined to account for time-dependence of model uncertainty.

1,178 citations

Journal Article•DOI•
TL;DR: An inversion procedure is introduced for nonlinear systems which constructs a bounded input trajectory in the preimage of a desired output trajectory which leads to a simple geometric connection between the unstable manifold of the system zero dynamics and noncausality in the nonminimum phase case.
Abstract: An inversion procedure is introduced for nonlinear systems which constructs a bounded input trajectory in the preimage of a desired output trajectory. In the case of minimum phase systems, the trajectory produced agrees with that generated by Hirschorn's inverse dynamic system; however, the preimage trajectory is noncausal (rather than unstable) in the nonminimum phase case. In addition, the analysis leads to a simple geometric connection between the unstable manifold of the system zero dynamics and noncausality in the nonminimum phase case. With the addition of stabilizing feedback to the preimage trajectory, asymptotically exact output tracking is achieved. Tracking is demonstrated with a numerical example and compared to the well-known Byrnes-Isidori regulator. Rather than solving a partial differential equation to construct a regulator, the inverse is calculated using a Picard-like interaction. When preactuation is not possible, noncausal inverse trajectories can be truncated resulting in the tracking-error transients found in other control schemes.

825 citations