scispace - formally typeset
Search or ask a question
Book

Nonlinear Programming

About: The article was published on 1995-01-01 and is currently open access. It has received 12671 citations till now. The article focuses on the topics: Nonlinear programming & Fritz John conditions.
Citations
More filters
Book
23 May 2011
TL;DR: It is argued that the alternating direction method of multipliers is well suited to distributed convex optimization, and in particular to large-scale problems arising in statistics, machine learning, and related areas.
Abstract: Many problems of recent interest in statistics and machine learning can be posed in the framework of convex optimization. Due to the explosion in size and complexity of modern datasets, it is increasingly important to be able to solve problems with a very large number of features or training examples. As a result, both the decentralized collection or storage of these datasets as well as accompanying distributed solution methods are either necessary or at least highly desirable. In this review, we argue that the alternating direction method of multipliers is well suited to distributed convex optimization, and in particular to large-scale problems arising in statistics, machine learning, and related areas. The method was developed in the 1970s, with roots in the 1950s, and is equivalent or closely related to many other algorithms, such as dual decomposition, the method of multipliers, Douglas–Rachford splitting, Spingarn's method of partial inverses, Dykstra's alternating projections, Bregman iterative algorithms for l1 problems, proximal methods, and others. After briefly surveying the theory and history of the algorithm, we discuss applications to a wide variety of statistical and machine learning problems of recent interest, including the lasso, sparse logistic regression, basis pursuit, covariance selection, support vector machines, and many others. We also discuss general distributed optimization, extensions to the nonconvex setting, and efficient implementation, including some details on distributed MPI and Hadoop MapReduce implementations.

17,433 citations

Book
01 Nov 2008
TL;DR: Numerical Optimization presents a comprehensive and up-to-date description of the most effective methods in continuous optimization, responding to the growing interest in optimization in engineering, science, and business by focusing on the methods that are best suited to practical problems.
Abstract: Numerical Optimization presents a comprehensive and up-to-date description of the most effective methods in continuous optimization. It responds to the growing interest in optimization in engineering, science, and business by focusing on the methods that are best suited to practical problems. For this new edition the book has been thoroughly updated throughout. There are new chapters on nonlinear interior methods and derivative-free methods for optimization, both of which are used widely in practice and the focus of much current research. Because of the emphasis on practical methods, as well as the extensive illustrations and exercises, the book is accessible to a wide audience. It can be used as a graduate text in engineering, operations research, mathematics, computer science, and business. It also serves as a handbook for researchers and practitioners in the field. The authors have strived to produce a text that is pleasant to read, informative, and rigorous - one that reveals both the beautiful nature of the discipline and its practical side.

17,420 citations

Journal ArticleDOI
TL;DR: It is proved the convergence of a recursive mean shift procedure to the nearest stationary point of the underlying density function and, thus, its utility in detecting the modes of the density.
Abstract: A general non-parametric technique is proposed for the analysis of a complex multimodal feature space and to delineate arbitrarily shaped clusters in it. The basic computational module of the technique is an old pattern recognition procedure: the mean shift. For discrete data, we prove the convergence of a recursive mean shift procedure to the nearest stationary point of the underlying density function and, thus, its utility in detecting the modes of the density. The relation of the mean shift procedure to the Nadaraya-Watson estimator from kernel regression and the robust M-estimators; of location is also established. Algorithms for two low-level vision tasks discontinuity-preserving smoothing and image segmentation - are described as applications. In these algorithms, the only user-set parameter is the resolution of the analysis, and either gray-level or color images are accepted as input. Extensive experimental results illustrate their excellent performance.

11,727 citations

Journal ArticleDOI
TL;DR: A new fast iterative shrinkage-thresholding algorithm (FISTA) which preserves the computational simplicity of ISTA but with a global rate of convergence which is proven to be significantly better, both theoretically and practically.
Abstract: We consider the class of iterative shrinkage-thresholding algorithms (ISTA) for solving linear inverse problems arising in signal/image processing. This class of methods, which can be viewed as an extension of the classical gradient algorithm, is attractive due to its simplicity and thus is adequate for solving large-scale problems even with dense matrix data. However, such methods are also known to converge quite slowly. In this paper we present a new fast iterative shrinkage-thresholding algorithm (FISTA) which preserves the computational simplicity of ISTA but with a global rate of convergence which is proven to be significantly better, both theoretically and practically. Initial promising numerical results for wavelet-based image deblurring demonstrate the capabilities of FISTA which is shown to be faster than ISTA by several orders of magnitude.

11,413 citations

Journal ArticleDOI
TL;DR: This tutorial gives an overview of the basic ideas underlying Support Vector (SV) machines for function estimation, and includes a summary of currently used algorithms for training SV machines, covering both the quadratic programming part and advanced methods for dealing with large datasets.
Abstract: In this tutorial we give an overview of the basic ideas underlying Support Vector (SV) machines for function estimation. Furthermore, we include a summary of currently used algorithms for training SV machines, covering both the quadratic (or convex) programming part and advanced methods for dealing with large datasets. Finally, we mention some modifications and extensions that have been applied to the standard SV algorithm, and discuss the aspect of regularization from a SV perspective.

10,696 citations


Cites background from "Nonlinear Programming"

  • ...…that SVs are not plagued with the problem of local minima as Neural Networks are.7 Lagrange function: The Lagrange function is given by the primal objective function minus the sum of all products between constraints and corresponding Lagrange multipliers (cf. e.g. Fletcher 1989, Bertsekas 1995)....

    [...]